There are many infrared radiometer systems available for the measurement of in situ sea surface skin temperature (SSST). Unfortunately, the marine environment is extremely hostile to optical components, and to ensure the accuracy of SSST measurements, an absolute calibration of instrumentation using an independent calibration reference is required both before and after any sea deployment. During extended deployments it is prudent to have additional regular calibration data to monitor instrument performance characteristics. This paper presents a design for an ambient temperature (278-325 K), wide aperture (100 mm), reference blackbody unit that may be used to calibrate a variety of seagoing infrared radiometer systems both in the laboratory and in the field. The blackbody consists of a spun copper cavity coated with well-characterized high emissivity paint (Mankiewicz Nextel Velvet Coating 811-21) immersed in a water bath that is continuously mixed using a strong water pump. The radiant temperature of the blackbody cavity is determined from the measured water bath temperature. Results derived from validation and intercomparison experiments show this blackbody design to be an accurate and reliable reference blackbody source. However, in order to ensure that the best possible calibration data are obtained, extreme care must be taken to ensure the accurate measurement of the water bath temperature, proper positioning of a radiometer in front of the cavity itself, and prevention of condensation on the cavity surface. Four blackbody units have been specifically built for the European Union combined action for the study of the ocean thermal skin (CASOTS) program. Using these units as reference radiance sources, the authors describe the strategy adopted and present results obtained from the CASOTS radiometer intercalibration experiment. These results highlight the need to obtain independent calibration data both before and after seagoing radiometer deployments and the need to standardize field radiometer calibration protocols.
The nonlinearity of a mercury cadmium telluride photoconductive detector, an integral part of a modified commercial interferometer used for airborne research, has been analyzed and evaluated against a number of correction schemes. A high-quality blackbody with accurate temperature control has been used as a stable and well-characterized radiation source. The detector nonlinearity was established as a function of scene temperature between 194 and 263 K. Second- and third-order corrections to the measured interferogram have been tested by analyzing the measured signal both within and outside the spectral response region of the detector. A combined correction scheme is proposed that best represents the real nonlinear response of the detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.