Silicon (Si)‐based negative electrodes have attracted much attention to increase the energy density of lithium ion batteries (LIBs) but suffer from severe volume changes, leading to continuous re‐formation of the solid electrolyte interphase and consumption of active lithium. The pre‐lithiation approach with the help of positive electrode additives has emerged as a highly appealing strategy to decrease the loss of active lithium in Si‐based LIB full‐cells and enable their practical implementation. Here, the use of lithium squarate (Li2C4O4) as low‐cost and air‐stable pre‐lithiation additive for a LiNi0.6Mn0.2Co0.2O2 (NMC622)‐based positive electrode is investigated. The effect of additive oxidation on the electrode morphology and cell electrochemical properties is systematically evaluated. An increase in cycle life of NMC622||Si/graphite full‐cells is reported, which grows linearly with the initial amount of Li2C4O4, due to the extra Li+ ions provided by the additive in the first charge. Post mortem investigations of the cathode electrolyte interphase also reveal significant compositional changes and an increased occurrence of carbonates and oxidized carbon species. This study not only demonstrates the advantages of this pre‐lithiation approach but also features potential limitations for its practical application arising from the emerging porosity and gas development during decomposition of the pre‐lithiation additive.
Li‐Ion Batteries
In article number 2103045, Aurora Gomez‐Martin, Richard Schmuch, and co‐workers report the effect of Mg substitution on mitigating the structural challenges of Ni‐rich layered oxide cathode materials upon cycling in lithium‐ion batteries. While partial substitution of Mg in Li sites linearly reduces the initial capacities at a given upper cut‐off cell voltage, the attainable cycle life is significantly extended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.