Abstract-Remote control of robots is often necessary to complete complex unstructured tasks in environments that are inaccessible (e.g. dangerous) for humans. Tele-operation of humanoid robots is often performed trough motion tracking to reduce the complexity deriving from manually controlling a high number of DOF. However, most commercial motion tracking apparatus are expensive and often uncomfortable. Moreover, a limitation of this approach is the need to maintain visual contact with the operated robot, or to employ a second human operator to independently maneuver a camera. As a result, even performing simple tasks heavily depends on the skill and synchronization of the two operators. To alleviate this problem we propose to use augmented-reality to provide the operator with first-person vision and a natural interface to directly control the camera, and at the same time the robot. By integrating recent off-the-shelf technologies, we provide an affordable and intuitive environment composed of Microsoft Kinect, Oculus Rift and haptic SensorGlove to tele-operate in first-person humanoid robots. We demonstrate on the humanoid robot iCub that this set-up allows to quickly and naturally accomplish complex tasks.
Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a challenging task. Triple Graph Grammars (TGGs) specify model consistency by means of rules. They can be used to automatically derive specifications of edit operations for single models and repair rules that propagate model changes to related models. model (re-)synchronization activities more effectively, a construction mechanism for shortcut rules has been recently developed. They describe consistency-preserving complex edit operations across model boundaries. We show that edit and repair rules can be derived from shortcut rules. As proof of concept, we implemented the construction and application of shortcut edit and repair rules in eMoflon. Our evaluation shows that shortcut rule based repair processes have considerably decreased data loss and improved runtime compared to former model synchronization processes in eMoflon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.