The continuous synthesis of Grignard reagents has been investigated under continuous processing conditions using Mg turnings at variable liquid throughputs and concentrations. A novel process window easily accessible through continuous processing was employed, namely, using a large molar access of Mg turnings within the reactor and achieving Mg activation by mechanical means. A laboratory and a 10-fold-increased pilot-scale reactor setup were built and evaluated, including integrated inline analytics via ATR-IR measurements. The main goal of this work was to explore the full potential of classic Grignard reagent formation through the use of scalable flow chemistry and to allow for fast and safe process optimization. It was found that on both the laboratory and pilot scales, full conversion of the employed halides could be achieved with a single passage through the reactor. Furthermore, Grignard reagent yields of 89−100% were reached on the laboratory scale.
The continuous synthesis of organozinc reagents and their immediately following subsequent also continuous consumption in catalyzed and noncatalyzed coupling reactions were investigated. In the first step, a bed of Zn turnings at variable liquid throughputs and concentrations of organic halide solutions was used, and the formed Zn organometallics were analyzed for quality control. They were then directly pumped into a second step, namely, Reformatsky, Saytzeff, and Negishi coupling reactions. In the organozinc halides' formation, a novel process window was employed by using a large molar excess of Zn turnings and investigating mechanical as well as chemical Zn activation. Subsequent couplings of the freshly prepared Zn organometallics were done using examples of a Reformatsky, Saytzeff, and Negishi coupling reaction. For the Zn organometallics' formation, a laboratoryscale reactor setup previously built for Grignard reagent formation was evaluated including a Zn replenishing unit; the same reactor was also used in the metal-catalyzed subsequent step (Negishi coupling). The main objective of this work was to establish the scalable continuous formation of Zn organometallic reagents enabling fast and safe process optimization, analyze the reagents for their purity, and then immediately consume them in various follow-up steps, always only leaving a very small amount of reactive and sensitive organometallic reagent in the setup. It was found that full conversion of the employed halides could be achieved within a single passage through the reactor with organozinc yields of 82−92%, as well as being able to successfully perform subsequent nonand metal-catalyzed coupling steps with yields of up to 92%. A pilot-scale setup allowing a liquid throughput of up to 3−5 L/h has also been built and is ready to be tested with the synthesis as established here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.