of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
We consider a receding horizon control scheme without terminal constraints in which the stage cost is defined by economic criteria, i.e., not necessarily linked to a stabilization or tracking problem. We analyze the performance of the resulting receding horizon controller with a particular focus on the case of optimal steady states for the corresponding averaged infinite horizon problem. Using a turnpike property and suitable controllability properties we prove near optimal performance of the controller and convergence of the closed loop solution to a neighborhood of the optimal steady state. Several examples illustrate our findings numerically and show how to verify the imposed assumptions.
In this chapter, we introduce the nonlinear model predictive control algorithm in a rigorous way. We start by defining a basic NMPC algorithm for constant reference and continue by formalizing state and control constraints. Viability (or weak forward invariance) of the set of state constraints is introduced and the consequences for the admissibility of the NMPC feedback law are discussed. After having introduced NMPC in a special setting, we describe various extensions of the basic algorithm, considering time varying reference solutions, terminal constraints and costs and additional weights. Finally, we investigate the optimal control problem corresponding to this generalized setting and prove several properties, most notably the dynamic programming principle.
We present a technique for computing stability and performance bounds for unconstrained nonlinear model predictive control (MPC) schemes. The technique relies on controllability properties of the system under consideration and the computation can be formulated as an optimization problem whose complexity is independent of the state space dimension. Based on the insight obtained from the numerical solution of this problem we derive design guidelines for nonlinear MPC schemes which guarantee stability of the closed loop for small optimization horizons. These guidelines are illustrated by a finite and an infinite dimensional example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.