This study investigated the anodic dissolution of Al current collectors in unconventional electrolytes for high voltage electrochemical double-layer capacitors (EDLCs) containing adiponitrile (ADN), 3-cyanopropionic acid methyl ester (CPAME), 2-methyl-glutaronitrile (2-MGN) as solvent, and tetraethylammonium tetrafluoroborate (Et NBF ) and tetraethylammonium bis(trifluoromethanesulfonyl)imide (Et NTFSI) as conductive salts. To have a comparison with the state-of-the-art electrolytes, the same salts were also used in combination with acetonitrile (ACN). The chemical-physical properties of the electrolytes were investigated. Furthermore, their impact on the anodic dissolution of Al was analyzed in detail as well as the influence of this process on the performance of high voltage EDLCs. The results of this study indicated that in the case of Et NBF -based electrolytes, the use of an alternative solvent is very beneficial for the realization of stable devices. When Et NTFSI is used, the reduced solubility of the complex Al(TFSI) appears to be the key for the realization of advanced electrolytes.
In this work an investigation about the use of the solvents 1,1,2,2-tetramethoxyethane, also called tetramethoxy glyoxal (TMG), and 1,1,2,2-tetraethoxyethane [also called tetraethoxy glyoxal (TEG)], which belong to the chemical family of carbonyl derivatives, as electrolyte components for electrical double layer capacitors (EDLCs) and lithium-ion batteries (LIBs) is reported for the first time. TEG and TMG are commercial solvents displaying a good set of properties, a low toxicity, and a low price. Although for EDLCs the use of these solvents does appear particularly appealing, their use in LIBs is certainly interesting. The preliminary results reported in this study indicate that the performance of lithium iron phosphate electrodes in LIBs using electrolytes based on TEG and TMG is promising in terms of capacity, capacity retention at high C rates, and cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.