The persistent rise of Energy Harvesting Wireless Sensor Networks entails increasing demands on the efficiency and configurability of energy management. New applications often profit from or even require user-defined time-varying utilities, for example, the health assessment of bridges is only possible at rushhour. However, monitoring times do not necessarily overlap with energy harvest periods. This misalignment is often corrected by over-provisioning the energy storage. Favourable small-footprint and cheap energy storage, however, fill up quickly and waste surplus energy. Hence, EmRep is presented, which decouples the energy management of high-intake from low-intake harvest periods. Based on the State-of-Charge extrema prediction, the authors enhance energy management and reduce saturation of energy storage by design. Considering multiple user-defined utility profiles, the benefits of EmRep in combination with a variety of prediction algorithms, time resolutions, and energy storage sizes are showcased. EmRep is tailored to platforms with small energy storage, in which it is found that it doubles effective utility, and also increases performance by 10% with large-sized storage.
K E Y W O R D S embedded system, energy consumption, hardware-software codesignThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.