A new way to prepare magnesia-alumina-spinel was investigated making use of a mixed powder system of MgO and metallic Al-3 wt% Mg. Intensive ball milling was applied which provides the formation of new powder particles as composite of both components in intimate contact. The new configuration of the particles had a significant impact on the reaction sintering behavior leading to single phase spinel microstructures at moderate temperatures below 14001C. Optimized milling of the powder mixture was therefore required providing reduced crystallite sizes and strongly enlarged interfacial area shared by the reacting components. The optimal milling time was identified by the complete reaction of the starting powders to spinel during sintering. Shorter milling times led to incomplete reactions and longer milling times contaminated the milling product by debris from the milling tools. The amount of interfaces generated by the intimate mixing dominated the sintering reaction kinetics whereas the specific surfaces area was of secondary importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.