Preterm neonates have an immature gut and metabolism and may benefit from total parenteral nutrition (TPN) before enteral food is introduced. Conversely, delayed enteral feeding may inhibit gut maturation and sensitize to necrotizing enterocolitis (NEC). Intestinal mass and NEC lesions were first recorded in preterm pigs fed enterally (porcine colostrum, bovine colostrum, or formula for 20–40 h), with or without a preceding 2- to 3-day TPN period ( n = 435). Mucosal mass increased during TPN and further after enteral feeding to reach an intestinal mass similar to that in enterally fed pigs without TPN (+60–80% relative to birth). NEC developed only after enteral feeding but more often after a preceding TPN period for both sow's colostrum (26 vs. 5%) and formula (62 vs. 39%, both P < 0.001, n = 43–170). Further studies in 3-day-old TPN pigs fed enterally showed that formula feeding decreased villus height and nutrient digestive capacity and increased luminal lactic acid and NEC lesions, compared with colostrum (bovine or porcine, P < 0.05). Mucosal microbial diversity increased with enteral feeding, and Clostridium perfringens density was related to NEC severity. Formula feeding decreased plasma arginine, citrulline, ornithine, and tissue antioxidants, whereas tissue nitric oxide synthetase and gut permeability increased, relative to colostrum (all P < 0.05). In conclusion, enteral feeding is associated with gut dysfunction, microbial imbalance, and NEC in preterm pigs, especially in pigs fed formula after TPN. Conversely, colostrum milk diets improve gut maturation and NEC resistance in preterm pigs subjected to a few days of TPN after birth.
The postimplantation developmental potential of embryos can be affected by various forms of cell death, such as apoptosis, at preimplantation stages. However, correct assessment of apoptosis is needed for adequate inference of the developmental significance of this process. This study is the first to investigate the independent chronological occurrence of apoptotic changes in nuclear morphology and DNA degradation (detected by the TUNEL reaction) and incidences of nuclei displaying these features at various preimplantation stages of bovine embryos produced both in vivo and in vitro. Different elements of apoptosis were observed at various developmental stages and appeared to be differentially affected by in vitro production. Nuclear condensation was observed from the 6-cell stage in vitro and the 8-cell stage in vivo, whereas the TUNEL reaction was first observed at the 6-cell stage in vitro and the 21-cell stage in vivo. Morphological signs of other forms of cell death were also observed in normally developing embryos produced both in vivo and in vitro. The onset of apoptosis seems to be developmentally regulated in a stage-specific manner, but discrete features of the apoptotic process may be differentially regulated and independently modulated by the mode of embryo production. Significant differences in indices of various apoptotic features were not evident between in vivo- and in vitro-produced embryos at the morula stage, but such differences could be observed at the blastocyst stage, where in vitro production was associated with a higher degree of apoptosis in the inner cell mass.
Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions.
The present paper describes the primary structure, glycosylation and tissue localization of fetal antigen 1 (FA1) isolated from second-trimester human amniotic fluid. FA1 is a single-chained, heterogeneous glycoprotein of 225 -262 amino acid residues. FA1 has six well conserved epidermalgrowth-factor motifs and contains up to ten O-glycosylation and N-glycosylation sites, six of which are differentially glycosylated. Alignment to the translated sequences of Mus. musculus dlk and human dlk revealed 86% and 99% identity, respectively, to a 259-amino-acid residue overlap, and this high similarity extends with minor corrections to the human adrenal-specific mRNA, pG2 as well. Immunohistochemical analysis demonstrated the presence of FA1 in 10 out of 14 lung tumors containing neuroendocrine elements, and in the placental villi where FA1 was exclusively seen in stromal cells in close contact to the vascular structure. In the pancreas, FA1 co-localized with insulin in the insulin secretory granules of the p cells within the islets of Langerhans.Our findings suggest that FA1 is synthesized as a membrane anchored protein and released into the circulation after enzymic cleavage, and that circulating FA1 represents the post-translationally modified gene product of human dlk which, in turn, is identical to human adrenal-specific mRNA pG2.The circulating form of fetal antigen 1 (FA1) was originally isolated from normal human amniotic fluid during the second trimester of pregnancy (Fay et al., 1988). The fetal origin of FA1 was suggested in accordance with the quantitative distribution in fetal and maternal compartments and immunohistochemical analysis (Fay et al., 1988;Tornehave et al., 1989). High concentrations of FA1 were found in secondtrimester amniotic fluid and in fetal serum, whereas the concentration in normal human serum was found to be approximately 20ng/mL which is 1000-times less than in secondtrimester fetal serum (Jensen, 1992). In preliminary-tissue localization studies using the indirect immunoperoxidase technique on fetal tissues (week 7), FA1 immunoreactivity was detected in the hepatocytes of the fetal liver (Tomehave et Abbreviations. FA1, fetal antigen 1 ; EGF, epidermal growth factor; PDMS, plasma-desorption mass spectrometry ; MALDI-MS, matrix-assisted laser-desorptionionisation mass spectrometry; BCG, Bacille, Calmette, GuLrin ; PPD, purified protein derivative; PEG, poly(ethy1ene glycol) ; FITC, fluoroscein isothiocyanate ; NSE, neuron-specific enolase.
The gastrointestinal tract is subdivided into regions with different roles in digestion and absorption. How this patterning is established is unknown. We now report that the pancreatic-duodenal homeobox 1 gene (pdx1) is also expressed in cells of the distal stomach. Positive cells include subpopulations of the three main endocrine (gastrin, somatostatin and serotonin) cell types of this region. Pdx1 deficient mice were virtually devoid of gastrin cells, had normal numbers of somatostatin cells and increased numbers of serotonin cells. Pdx1 is thus important for development of the gastrin cells of the antropyloric mucosa of the stomach and probably acts by controlling the fate of gastrin/serotonin precursor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.