Studies on expression and function of key developmental control genes suggest that the embryonic vertebrate brain has a tripartite ground plan that consists of a forebrain/midbrain, a hindbrain and an intervening midbrain/hindbrain boundary region, which are characterized by the specific expression of the Otx, Hox and Pax2/5/8 genes, respectively. We show that the embryonic brain of the fruitfly Drosophila melanogasterexpresses all three sets of homologous genes in a similar tripartite pattern. Thus, a Pax2/5/8 expression domain is located at the interface of brain-specific otd/Otx2 and unpg/Gbx2 expression domains anterior to Hox expression regions. We identify this territory as the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain. Mutational inactivation of otd/Otx2 and unpg/Gbx2 result in the loss or misplacement of the brain-specific expression domains of Pax2/5/8 and Hox genes. In addition, otd/Otx2 and unpg/Gbx2 appear to negatively regulate each other at the interface of their brain-specific expression domains. Our studies demonstrate that the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain displays developmental genetic features similar to those observed for the midbrain/hindbrain boundary region in vertebrate brain development. This suggests that a tripartite organization of the embryonic brain was already established in the last common urbilaterian ancestor of protostomes and deuterostomes.
Embryonic development in Drosophila is characterized by an early phase during which a cellular blastoderm is formed and gastrulation takes place, and by a later postgastrulation phase in which key morphogenetic processes such as segmentation and organogenesis occur. We have focused on this later phase in embryogenesis with the goal of obtaining a comprehensive analysis of the zygotic gene expression that occurs during development under normal and altered environmental conditions. For this, a functional genomic approach to embryogenesis has been developed that uses highdensity oligonucleotide arrays for large-scale detection and quantification of gene expression. These oligonucleotide arrays were used for quantitative transcript imaging of embryonically expressed genes under standard conditions and in response to heat shock. In embryos raised under standard conditions, transcripts were detected for 37% of the 1,519 identified genes represented on the arrays, and highly reproducible quantification of gene expression was achieved in all cases. Analysis of differential gene expression after heat shock revealed substantial expression level changes for known heat-shock genes and identified numerous heat shock-inducible genes. These results demonstrate that highdensity oligonucleotide arrays are sensitive, efficient, and quantitative instruments for the analysis of large scale gene expression in Drosophila embryos. R ecently the genome of the first multicellular eukaryote Caenorhabditis elegans was completely elucidated (1). Sequencing of the Drosophila melanogaster genome has now also been carried out, and currently the corresponding putative open reading frames are being defined and verified (2). On the basis of this complete genomic information, it will now be important to determine the complex expression of all encoded genes and to analyze physiological as well as pathological phenomena from a global genetic perspective. Large-scale transcript analysis is made possible by DNA micro-or oligonucleotide arrays (3, 4), both of which allow the simultaneous monitoring of hundreds of mRNA expression profiles (5, 6). In this study, we used Drosophila high-density oligonucleotide arrays to monitor the simultaneous expression of zygotically active genes during the later postgastrulation stages of embryonic development (7-9). We analyzed the relative abundance levels of hundreds of embryonically expressed genes under normal physiological conditions and in response to heat shock (10). In embryos raised under normal conditions, we obtained highly reproducible quantification for 563 expressed genes corresponding to different functional classes. After a 36°C heat shock, we detected increases in expression levels for known heat-shock genes and identified numerous heat-shock-inducible genes. Materials and MethodsEmbryos. D. melanogaster Oregon R stocks were kept on standard cornmeal͞yeast͞agar medium at 25°C. Embryos were collected overnight on grape-juice plates for 12 h and were kept for a further 5 h at 25°C before RNA isolation...
The development of visual organs is regulated in Bilateria by a network of genes where members of the Six and Pax gene families play a central role. To investigate the molecular aspects of eye evolution, we analyzed the structure and expression patterns of cognate members of the Six family genes in jellyfish (Cnidaria, Hydrozoa), representatives of a basal, non-bilaterian phylum where complex lens eyes with spherical lens, an epidermal cornea, and a retina appear for the first time in evolution. In the jellyfish Cladonema radiatum, a species with well-developed lens eyes in the tentacle bulbs, Six1/2-Cr and Six3/6-Cr, are expressed in the eye cup. Six4/5-Cr is mainly expressed in the manubrium, the feeding, and sex organ. All three Six genes are expressed in different subsets of epidermal nerve cells, possibly of the RFamide type which are part of a net connecting the different eyes with each other and the effector organs. Furthermore, expression is found in other tissues, notably in the striated muscle. During eye regeneration, expression of Six1/2-Cr and Six3/6-Cr is upregulated, but not of Six4/5-Cr. In Podocoryne carnea, a jellyfish without eyes, Six1/2-Pc and Six3/6-Pc are also expressed in the tentacle bulbs, Six1/2-Pc additionally in the manubrium and striated muscle, and Six3/6-Pc in the mechanosensory nematocytes of the tentacle. The conserved gene structure and expression patterns of all Cladonema Six genes suggest broad conservation of upstream regulatory mechanisms in eye development.
We analyzed the expression and function of eyeless (ey) and twin of eyeless (toy) in the embryonic central nervous system (CNS) of Drosophila. Both genes are differentially expressed in specific neuronal subsets (but not in glia) in every CNS neuromere, and in the brain, specific cell populations co-expressing both proteins define a longitudinal domain which is intercalated between broad exclusive expression domains of ey and toy. Studies of genetic null alleles and dsRNA interference did not reveal any gross neuroanatomical effects of ey, toy, or ey/toy elimination in the embryonic CNS. In contrast, targeted misexpression of ey, but not of toy, resulted in profound axonal abnormalities in the embryonic ventral nerve cord and brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.