We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, investigating the diagonal property, or the toric Frobenius morphism.In the present paper we focus on line bundles on toric varieties. First, we present a possibility of understanding their cohomology in terms of their (generalized) momentum polytopes. Then we present a method to exhibit the entire locus of immaculate divisors within the class group. This will be applied to the cases of smooth toric varieties of Picard rank two and three and to those being given by splitting fans.The locus of immaculate line bundles contains several linear strata of varying dimensions. We introduce a notion of relative immaculacy with respect to certain contraction morphisms. This notion will be stronger than plain immaculacy and provides an explanation of some of these linear strata.
A b s t r ac t . We report on the implementation of an algorithm for computing the set of all regular triangulations of finitely many points in Euclidean space. This algorithm, which we call down-flip reverse search, can be restricted, e.g., to computing full triangulations only; this case is particularly relevant for tropical geometry. Most importantly, down-flip reverse search allows for massive parallelization, i.e., it scales well even for many cores. Our implementation allows to compute the triangulations of much larger point sets than before.2010 Mathematics Subject Classification. 52B55 (68U05).
This chapter provides a guide to our polymake extension cellularSheaves. We first define cellular sheaves on polyhedral complexes in Euclidean space, as well as cosheaves, and their (co)homologies. As motivation, we summarise some results from toric and tropical geometry linking cellular sheaf cohomologies to cohomologies of algebraic varieties. We then give an overview of the structure of the extension cellularSheaves for polymake. Finally, we illustrate the usage of the extension with examples from toric and tropical geometry.
Abstract. Given a cone σ ⊆ N R with smooth two-dimensional faces and, moreover, an element R ∈ σ ∨ ∩ M of the dual lattice, we describe the part of the versal deformation of the associated toric variety TV(σ) that is built from the deformation parameters of multidegree R. The base space is (the germ of) an affine schemeM that reflects certain possibilities of splitting Q := σ ∩ [R = 1] into Minkowski summands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.