For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action.
In aquatic-mating pinnipeds, acoustic communication plays an important role in male competition and mate attraction. Vocal repertoire size and composition during the breeding season varies between species and is presumed to be a product of interspecific differences in sexual selection. In this study, we examine seasonal and diel patterns in acoustic repertoire size, composition and call activity of 4 Antarctic pinniped species: Weddell seal Leptonychotes weddellii, leopard seal Hydrurga leptonyx, Ross seal Ommatophoca rossii and crabeater seal Lobodon carcinophaga. An
Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31’S, 8°13’W) are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.
Loud hydroacoustic sources, such as naval mid-frequency sonars or airguns for marine geophysical prospecting, have been increasingly criticized for their possible negative effects on marine mammals and were implicated in several whale stranding events. Competent authorities now regularly request the implementation of mitigation measures, including the shut-down of acoustic sources when marine mammals are sighted within a predefined exclusion zone. Commonly, ship-based marine mammal observers (MMOs) are employed to visually monitor this zone. This approach is personnel-intensive and not applicable during night time, even though most hydroacoustic activities run day and night. This study describes and evaluates an automatic, ship-based, thermographic whale detection system that continuously scans the ship’s environs for whale blows. Its performance is independent of daylight and exhibits an almost uniform, omnidirectional detection probability within a radius of 5 km. It outperforms alerted observers in terms of number of detected blows and ship-whale encounters. Our results demonstrate that thermal imaging can be used for reliable and continuous marine mammal protection.
Marine sound, natural or anthropogenic, has long fascinated scientists, mariners, and the general public. The haunting songs of humpback whales and the pings of antisubmarine sonar, among other sounds from the oceans, convey allure and suspense. Recently, that suspense has moved from television screens to courtrooms, where navies, scientists, and environmentalists have clashed over the effects of anthropogenic sound on marine mammals [Malakoff, 2002]. Triggered by atypical mass strandings of primarily beaked whales in concordance with naval sonar exercises off Greece in 1996 and the Bahamas in 2000, substantial efforts to obtain baseline data to understand the possible effects of anthropogenic sound on marine mammals have commenced. Recent advances include dive and vocalization records of beaked whales [Johnson et al., 2004] and detailed observations of the behavioral response of sperm whales on seismic signals [Jochens et al., 2006].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.