The amounts of three main polyacetylenes in carrots; falcarinol, falcarindiol, and falcarindiol-3-acetate, were determined by HPLC, during three seasons, in carrots harvested several times per season and at different locations in Sweden. The amounts of falcarindiol first decreased from a relatively high level and then increased later in the harvest season. The amounts of falcarindiol-3-acetate showed similar variations, whereas the amounts of falcarinol did not exhibit any significant variation during the harvest season. During storage the amount of polyacetylenes leveled off, increasing in samples initially low and decreasing in samples initially high in polyacetylenes. The amounts of all polyacetylenes varied significantly due to external factors and between stored and fresh samples. This variation opens up possibilities to achieve a chemical composition of polyacetylenes at harvest that minimizes the risk of bitter off-taste and maximizes the positive health effects reported in connection with polyacetylenes in carrots.
The results indicate similarities in the activity of the enzymes transforming sucrose to hexoses and the enzymes transforming falcarinol to falcarindiol-3-acetate and falcarindiol. The negative correlation between root size and polyacetylenes seems to be partly due to dilution but also to a higher synthetisation rate in smaller roots. The results indicate the existence of an equilibrium regulating the level of falcarinol.
This study assessed the concentrations of three falcarinol-type polyacetylenes (falcarinol, falcarindiol, falcarindiol-3-acetate) in carrots and the correlations between these and different soil traits. A total of 144 carrot samples, from three different harvests taken a single season, were analysed in terms of their polyacetylene concentrations and root development. On one of the harvesting occasions, 48 soil samples were also taken and analysed. The chemical composition of the soil was found to influence the concentrations of falcarinol-type polyacetylenes in carrots. When the total soil potassium level was 200 mg/100 g soil, the concentration of falcarindiol (FaDOH) in the carrot samples was 630 μg/g DW, but when carrots were grown in soil with a total potassium level of 300 mg/100 g soil, the FaDOH concentration in the carrots fell to 445 μg/g DW. Carrots grown in soils generally low in available phosphorus exhibited higher levels of falcarindiol if the soil was also low in available magnesium and calcium. The concentrations of polyacetylenes in carrots were positively correlated with total soil phosphorus level, but negatively correlated with total soil potassium level. Of the three polyacetylenes analysed, FaDOH concentrations were influenced most by changes in soil chemical composition.
This study evaluated the effects of organic agriculture manuring systems on carrot (Daucus carota) root morphology and sugar and polyacetylene content. Carrots were harvested three times per season 2006–2007 in a long-term field experiment at Skilleby research farm, Sweden. The effects of pelleted chicken manure, fresh farmyard manure and composted farmyard manure (COM) were compared against control plots left unmanured since the field experiment started in 1991. The carrots were analyzed for root size, root shape, amount of soluble sugars and amount of falcarinol-type polyacetylenes. Differences between manuring systems were found to be smaller than the variation between harvest years and harvest occasions, probably due to the grass-clover ley included in the crop rotation system. On an average for the six harvests, manuring with COM increased root length by 6% compared with fertilizing with pelleted chicken manure. Carrots fertilized with pelleted chicken manure also had 6–7% lower total soluble sugar content than carrots manured with 50 t ha−1 of composted or fresh manure. The falcarinol to total falcarinol-type polyacetylenes ratio was 15.4% in carrots manured with 50 t ha−1 of composted or fresh manure and 14.7% in carrots fertilized with pelleted chicken manure. Seasonal fluctuations in falcarinol-type polyacetylenes were more pronounced in carrots manured with fresh or composted manure than in carrots fertilized with pelleted chicken manure. The results suggest that manuring organic carrots with compost may be the most beneficial strategy, at least in systems where fertilizer is applied only once per crop rotation, whether directly to the carrot crop or in the preceding crop.
The aim of this paper was to present results from two long term field experiments comparing potato samples from conventional farming systems with samples from biodynamic farming systems. The principal component analyses (PCA), consistently exhibited differences between potato samples from the two farming systems. According to the PCA, potato samples treated with inorganic fertilizers exhibited a variation positively related to amounts of crude protein, yield, cooking or tissue discoloration and extract decomposition. Potato samples treated according to biodynamic principles, with composted cow manure, were more positively related to traits such as Quality- and EAA-indices, dry matter content, taste quality, relative proportion of pure protein and biocrystallization value. Distinctions between years, crop rotation and cultivars used were sometimes more significant than differences between manuring systems. Grown after barley the potato crop exhibited better quality traits compared to when grown after ley in both the conventional and the biodynamic farming system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.