The resolution and quantitative accuracy of PET are highly influenced by the reconstruction method. Penalized-likelihood estimation algorithms allow for fully convergent iterative reconstruction, generating a higher image contrast than ordered-subsets expectation maximization (OSEM) while limiting noise. In this study, a type of penalized reconstruction known as block-sequential regularized expectation maximization (BSREM) was compared with time-of-flight OSEM (TOF OSEM). Various strengths of noise penalization factor β were tested along with various acquisition durations and transaxial fields of view (FOVs) with the aim of evaluating the performance and clinical use of BSREM for F-FDG PET/CT, both quantitatively and in a qualitative visual evaluation. Eleven clinical whole-body F-FDG PET/CT examinations acquired on a digital TOF PET/CT scanner were included. The data were reconstructed using BSREM with point-spread function recovery and β-factors of 133, 267, 400, and 533-and using TOF OSEM with point-spread function-for various acquisition times per bed position and various FOVs. Noise level, signal-to-noise ratio (SNR), signal-to-background ratio (SBR), and SUV were analyzed. A masked evaluation of visual image quality, rating several aspects, was performed by 2 nuclear medicine physicians to complement the analysis. The lowest levels of noise were reached with the highest β-factor, resulting in the highest SNR, which in turn resulted in the lowest SBR. A β-factor of 400 gave noise equivalent to TOF OSEM but produced a significant increase in SUV (11%), SNR (22%), and SBR (12%). BSREM with a β-factor of 533 at a decreased acquisition duration (2 min/bed position) was comparable to TOF OSEM at a full acquisition duration (3 min/bed position). Reconstructed FOV had an impact on BSREM outcome measures; SNR increased and SBR decreased when FOV was shifted from 70 to 50 cm. The evaluation of visual image quality resulted in similar scores for reconstructions, although a β-factor of 400 obtained the highest mean whereas a β-factor of 267 was ranked best in overall image quality, contrast, sharpness, and tumor detectability. In comparison with TOF OSEM, penalized BSREM reconstruction resulted in an increased tumor SUV and an improved SNR and SBR at a matched level of noise. BSREM allowed for a shorter acquisition than TOF OSEM, with equal image quality.
Background: Block-sequential regularized expectation maximization (BSREM) is a fully convergent iterative image reconstruction algorithm. We hypothesize that tracers with different distribution patterns will result in different optimal settings for the BSREM algorithm. The aim of this study was to evaluate the image quality with variations in the applied β-value and acquisition time for three positron emission tomography (PET) tracers. NEMA image quality phantom measurements and clinical whole-body digital time-of-flight (TOF) PET/computed tomography (CT) examinations with 68 Ga-DOTATOC (n = 13), 18 Ffluoride (n = 10), and 11 C-acetate (n = 13) were included. Each scan was reconstructed using BSREM with β-values of 133, 267, 400, and 533, and ordered subsets expectation maximization (OSEM; 3 iterations, 16 subsets, and 5-mm Gaussian post-processing filter). Both reconstruction methods included TOF and point spread function (PSF) recovery. Quantitative measures of noise, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) were analysed for various acquisition times per bed position (bp). Results: The highest β-value resulted in the lowest level of noise, which in turn resulted in the highest SNR and lowest SBR. Noise levels equal to or lower than those of OSEM were found with β-values equal to or higher than 400, 533, and 267 for 68 Ga-DOTATOC, 18 Ffluoride, and 11 C-acetate, respectively. The specified β-ranges resulted in increased SNR at a minimum of 25% (P < 0.0001) and SBR at a maximum of 23% (P < 0.0001) as compared to OSEM. At a reduced acquisition time by 25% for 68 Ga-DOTATOC and 18 F-fluoride, and 67% for 11 C-acetate, BSREM with β-values equal to or higher than 533 resulted in noise equal to or lower than that of OSEM at full acquisition duration (2 min/bp for 68 Ga-DOTATOC and 18 Ffluoride, 3 min/bp for 11 C-acetate). The reduced acquisition time with β 533 resulted in increased SNR (16-26%, P < 0.003) and SBR (6-18%, P < 0.0001 (P = 0.07 for 11 C-acetate)) compared to the full acquisition OSEM.
Accurate semiautomatic analysis of cardiac (11)C-PIB RI in amyloidosis patients is feasible. Parametric polarmaps and histograms make visual interpretation fast and simple.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.