Task-oriented repetitive movements can improve motor performance in patients with neurological or orthopaedic lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate, and document neurological and orthopedic rehabilitation. This paper deals with the application of "patient-cooperative" techniques to robot-aided gait rehabilitation of neurological disorders. We define patient-cooperative to mean that, during movement, the technical system takes into account the patient's intention and voluntary efforts rather than imposing any predefined movements or inflexible strategies. It is hypothesized that such cooperative robotic approaches can improve the therapeutic outcome compared to classical rehabilitation strategies. New cooperative strategies are presented that detect the patient's voluntary efforts. First, this enables the patient increased freedom of movement by a certain amount of robot compliance. Second, the robot behavior adapts to the existing voluntary motor abilities. And third, the robotic system displays and improves the patient contribution by visual biofeedback. Initial experimental results are presented to evaluate the basic principle and technical function of proposed approaches. Further improvements of the technical design and additional clinical testing is required to prove whether the therapeutic outcome can be enhanced by such cooperative strategies.
Path control: a method for patient-cooperative robot-aided gait rehabilitation Abstract-Gait rehabilitation robots are of increasing importance in neurorehabilitation. Conventional devices are often criticized because they are limited to reproducing predefined movement patterns. Research on patient-cooperative control strategies aims at improving robotic behavior. Robots should support patients only as much as needed and stimulate them to produce maximal voluntary efforts. This paper presents a patient-cooperative strategy that allows patients to influence the timing of their leg movements along a physiologically meaningful path. In this "path control" strategy, compliant virtual walls keep the patient's legs within a "tunnel" around the desired spatial path. Additional supportive torques enable patients to move along the path with reduced effort. Graphical feedback provides visual training instructions. The path control strategy was evaluated with 10 healthy subjects and 15 subjects with incomplete spinal cord injury. The spatio-temporal characteristics of recorded kinematic data showed that subjects walked with larger temporal variability with the new strategy. Electromyographic data indicated that subjects were training more actively. A majority of iSCI subjects was able to actively control their gait timing. Thus, the strategy allows patients to train walking while being helped rather than controlled by the robot.
Background: Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist.
It is known that improvement in walking function can be achieved in patients suffering a movement disorder after stroke or spinal cord injury by providing intensive locomotor training. Rehabilitation robots allow for a longer and more intensive training than that achieved by conventional therapies. Robot assisted treadmill training also offers the ability to provide objective feedback within one training session and to monitor functional improvements over time. This article provides an overview of the technical features and reports the clinical data available for one of these systems known as "Lokomat". First, background information is given for the neural mechanisms of gait recovery. The basic technical approach of the Lokomat system is then described. Furthermore, new features are introduced including cooperative control strategies, assessment tools and augmented feedback. These features may be capable of further enhancing training intensity and patient participation. Findings from clinical studies are presented covering the feasibility as well as efficacy of Lokomat assisted treadmill training.
BackgroundVirtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat®.MethodsA total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire.ResultsThe mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS × GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001).ConclusionsThe VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.