We have analysed the interactions of three proteoglycans of the decorin family, decorin, biglycan and fibromodulin, with transforming growth factor beta (TGF-beta). The proteoglycan core proteins, expressed from human cDNAs as fusion proteins with Escherichia coli maltose-binding protein, each bound TGF-beta 1. They showed only negligible binding to several other growth factors. Intact decorin, biglycan and fibromodulin isolated from bovine tissues competed with the fusion proteins for the TGF-beta binding. Affinity measurements suggest a two-site binding model with Kd values ranging from 1 to 20 nM for a high-affinity binding site and 50 to 200 nM for the lower-affinity binding site. The stoichiometry indicated that the high-affinity binding site was present in one of ten proteoglycan core molecules and that each molecule contained a low-affinity binding site. Tissue-derived biglycan and decorin were less effective competitors for TGF-beta binding than fibromodulin or the non-glycosylated fusion proteins; removal of the chondroitin/dermatan sulphate chains of decorin and biglycan (fibromodulin is a keratan sulphate proteoglycan) increased the activities of decorin and biglycan, suggesting that the glycosaminoglycan chains may hinder the interaction of the core proteins with TGF-beta. The fusion proteins competed for the binding of radiolabelled TGF-beta to Mv 1 Lu cells and endothelial cells. Affinity labelling showed that the binding of TGF-beta to betaglycan and the type-I receptors in Mv 1 Lu cells and to endoglin in endothelial cells was reduced, but the binding to the type-II receptors was unaffected. TGF-beta 2 and 3 also bound to all three fusion proteins. Latent recombinant TGF-beta 1 precursor bound slightly to fibromodulin and not at all to decorin and biglycan. The results show that the three decorin-type proteoglycans each bind TGF-beta isoforms and that slight differences exist in their binding properties. They may regulate TGF-beta activities by sequestering TGF-beta into extracellular matrix.
A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.