Summary• The family Araceae (3790 species, 117 genera) has one of the oldest fossil records among angiosperms. Ecologically, members of this family range from free-floating aquatics (Pistia and Lemna) to tropical epiphytes. Here, we infer some of the macroevolutionary processes that have led to the worldwide range of this family and test how the inclusion of fossil (formerly occupied) geographical ranges affects biogeographical reconstructions.• Using a complete genus-level phylogeny from plastid sequences and outgroups representing the 13 other Alismatales families, we estimate divergence times by applying different clock models and reconstruct range shifts under different models of past continental connectivity, with or without the incorporation of fossil locations.• Araceae began to diversify in the Early Cretaceous (when the breakup of Pangea was in its final stages), and all eight subfamilies existed before the K ⁄ T boundary. Early lineages persist in Laurasia, with several relatively recent entries into Africa, South America, South-East Asia and Australia.• Water-associated habitats appear to be ancestral in the family, and DNA substitution rates are especially high in free-floating Araceae. Past distributions inferred when fossils are included differ in nontrivial ways from those without fossils. Our complete genus-level time-scale for the Araceae may prove to be useful for ecological and physiological studies.
This study focuses on reconstructing the time‐calibrated phylogeny of the nine families comprising the order Sapindales, representing a diverse and economically important group of eudicots including citrus, mahogany, tree‐of‐heaven, cashew, mango, pistachio, frankincense, myrrh, lychee, rambutan, maple, and buckeye. We sampled three molecular markers, plastid genes rbcL and atpB, and the trnL‐trnLF spacer region, and covered one‐third of the generic diversity of Sapindales. All three markers produced congruent phylogenies using maximum likelihood and Bayesian methods for a set of taxa that included outgroups, i.e., members of the closely related orders Brassicales and Malvales, and the more distantly related Crossosomatales, Ranunculales, and Ceratophyllales. All results confirmed the current delimitation of the families within Sapindales, and the monophyly of the order. Concerning inter‐familial relationships, Biebersteiniaceae and Nitrariaceae formed a basal grade (or sister clade) to the rest of Sapindales with moderate support. The sister relationship of Kirkiaceae to Anacardiaceae and Burseraceae was strongly supported. The clade combining Anacardiaceae and Burseraceae as well as the clade combining Meliaceae, Simaroubaceae, and Rutaceae each received strong support. The sister relationship between Meliaceae and Simaroubaceae was moderately supported. The position of Sapindaceae could not be resolved with confidence. The Sapindales separated from their sister clade, comprising Brassicales and Malvales, in the Early Cretaceous at ca. 112 Ma, and diversified into the nine families from ca. 105 Ma until ca. 87 Ma during Early to Late Cretaceous times. Biebersteiniaceae and Nitrariaceae have the longest stem lineages observed in Sapindales, possibly indicating that extinction may have had a greater role in shaping their extant diversity than elsewhere within the order. Divergence within the larger families (Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, Sapindaceae, Simaroubaceae) started during the Late Cretaceous, extending into the Paleogene and Neogene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.