IntroductionBreathlessness is common in the population, especially in women and associated with adverse health outcomes. Obesity (body mass index (BMI) >30 kg/m2) is rapidly increasing globally and its impact on breathlessness is unclear.MethodsThis population-based study aimed primarily to evaluate the association of current BMI and self-reported change in BMI since age 20 with breathlessness (modified Research Council score ≥1) in the middle-aged population. Secondary aims were to evaluate factors that contribute to breathlessness in obesity, including the interaction with spirometric lung volume and sex.ResultsWe included 13 437 individuals; mean age 57.5 years; 52.5% women; mean BMI 26.8 (SD 4.3); mean BMI increase since age 20 was 5.0 kg/m2; and 1283 (9.6%) reported breathlessness. Obesity was strongly associated with increased breathlessness, OR 3.54 (95% CI, 3.03 to 4.13) independent of age, sex, smoking, airflow obstruction, exercise level and the presence of comorbidities. The association between BMI and breathlessness was modified by lung volume; the increase in breathlessness prevalence with higher BMI was steeper for individuals with lower forced vital capacity (FVC). The higher breathlessness prevalence in obese women than men (27.4% vs 12.5%; p<0.001) was related to their lower FVC. Irrespective of current BMI and confounders, individuals who had increased in BMI since age 20 had more breathlessness.ConclusionBreathlessness is independently associated with obesity and with weight gain in adult life, and the association is stronger for individuals with lower lung volumes.
Cross-linked agarose particles (Sepharose CL-6B) and baker's yeast cells were found to adhere to siliceous supports end-grafted with boronate-containing copolymers (BCCs) of N,N-dimethylacrylamide at pH> or =7.5, due to boronate interactions with surface carbohydrates of the particles and the cells. These interactions were registered both on macroscopic and on molecular levels: the BCCs spontaneously adsorbed on the agarose gel at pH> or =7.5, with adsorption increasing with pH. Agarose particles and yeast cells stained with Procion Red HE-3B formed stable, monolayer-like structures at pH 8.0, whereas at pH 7.0-7.8 the structures on the copolymer-grafted supports were less stable and more random. At pH 9.0, 50 % saturation of the surface with adhering cells was attained in 2 min. Stained cells formed denser and more stable layers on the copolymer-grafted supports than they did on supports modified with self-assembled organosilane layers derivatized with low-molecular-weight boronate, presumably due to a higher reactivity of the grafted BCCs. Quantitative detachment of adhered particles and cells could be achieved by addition of 20 mM fructose--a strong competitor for binding to boronates--at pH 7.0-9.0. Regeneration of the grafted supports allowed several sequential adhesion and detachment cycles with stained yeast cells. Affinity adhesion of micron-sized carbohydrate particles to boronate-containing polymer brushes fixed on solid supports is discussed as a possible model system suggesting a new approach to isolation and separation of living cells.
Boronate-containing polymer brushes were synthesized by free radical copolymerization of N,N-dimethylacrylamide (DMAA) and N-acryloyl-m-phenylboronic acid (NAAPBA) (9:1) on the surface of 3-mercaptopropyl-silylated glass plates and capillaries. The brushes were characterized with time-of-flight secondary ion mass-spectrometry (ToF SIMS), atomic force microscopy and contact angle measurements. Fructose caused a well-expressed drop spreading on the surface of copolymer-grafted glass, due to the strong interaction with the boronate groups. Sedimentation of murine hybridoma cells M2139 or human myeloid leukemia cells KG1 onto the DMAA-NAAPBA copolymer-grafted glass plates from 10 mM phosphate buffer solution (pH 8.0) resulted in the cell adhesion. The adhered M2139 and KG1 cells could be quantitatively detached from the grafted plates with 0.1 M fructose, which competed with cell surface carbohydrates for binding to the boronates. Evaluation of the binding strength between M2139 cells and the copolymer brush was performed by exposure of the adhered cells to a shear stress. Detachment of a fraction of 18% of the adhered M2139 cells was obtained at a shear force of 1400-2800 pN/cell generated by the running phosphate buffer (pH 8.0), whereas the remaining adhered cells (70%) could be detached with 0.1 M fructose dissolved in the same buffer. Possible applications of the boronate-containing polymer brushes to affinity cell separation can be based upon the facile recovery of the attached cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.