Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
Abstract. Accurate snowfall estimates are important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain gauges to estimate precipitation in this context. In particular, the Cloud Profiling Radar (CPR) on board CloudSat is proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and its ability to provide near-global vertical structure. CloudSat snowfall estimates play a particularly important role in the high-latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. In this paper, snowfall estimates from two observing systems – Swerad, the Swedish national weather radar network, and CloudSat – are compared. Swerad offers a well-calibrated data set of precipitation rates with high spatial and temporal resolution, at very high latitudes. The measurements are anchored to rain gauges and provide valuable insights into the usefulness of CloudSat CPR's snowfall estimates in the polar regions. In total, 7.2 × 105 matchups of CloudSat and Swerad observations from 2008 through 2010 were intercompared, covering all but the summer months (June to September). The intercomparison shows encouraging agreement between the two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46–82 km), where the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station, as Swerad's sensitivity decreases as a function of distance. Swerad also tends to overshoot low-level precipitating systems further away from the station, leading to an underestimation of snowfall rate and occasionally to missing precipitation altogether. Several statistical metrics – including the probability of detection, false alarm rate, hit rate, and Pierce's skill score – are calculated. The sensitivity of these metrics to the snowfall rate, as well as to the distance from the nearest radar station, are summarised. This highlights the strengths and the limitations of both observing systems at the lower and upper ends of the snowfall distributions as well as the range of uncertainties that can be expected from these systems in high-latitude regions.
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.
Titanium fulleride films (Ti x C 60 ) were prepared by coevaporating Ti and C 60 onto moderately heated substrates (∼100 °C) in an ultrahigh vacuum system. The Ti x C 60 films were all amorphous according to X-ray diffraction and exhibited a gray, metallic luster different from the brown color of pristine C 60 . The compound also appeared to be metallic or semiconducting as no charging was observed in X-ray photoelectron spectroscopy (XPS) in contrast to analyses of pure C 60 . XPS of the films showed a maximum titanium content of about 5.3-5.5 at. % (Ti ∼3.5 C 60 ). For higher titanium contents, carbide formation was observed. The XPS analyses also showed binding energy shifts and line broadening effects consistent with the formation of chemical bonds between Ti and C 60 . Raman spectroscopy showed a softening of the A g (2) mode upon Ti incorporation (-4 cm -1 /Ti atom) which is consistent with a partial charge transfer from Ti to C 60 . The Ti x C 60 films oxidized immediately upon air exposure. However, XPS and Raman spectroscopy show persistent differences from pristine C 60 which might indicate that another phase, Ti x O y C 60 , is formed upon oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.