This paper presents a generic framework for assessing inherent climate change hazards in coastal environments through a combined coastal classification and hazard evaluation system. The framework is developed to be used at scales relevant for regional and national planning and aims to cover all coastal environments worldwide through a specially designed coastal classification system containing 113 generic coastal types. The framework provides information on the degree to which key climate change hazards are inherent in a particular coastal environment, and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system includes a total of 565 individual hazard evaluations, each graduated into four different hazard levels based on a scientific literature review. The framework uses a simple assessment methodology with limited data and computing requirements, allowing for application in developing country settings. It is presented as a graphical tool-the Coastal Hazard Wheel-to ease its application for planning purposes.
Many coastlines throughout the world are retreating, as a result of erosion and sea level rise. The damage incurred to property, infrastructure, coastal flood defence, and the loss of ecosystem services and agricultural land have substantial economic repercussions. For many coastal regions located in developing countries, the assessment of the spatial extent of coastal erosion is very time-consuming and is often hampered by lack of data. To investigate the suitability of global open access data for coastal erosion assessments at regional scale six biogeophysical variables (geological layout, waves, sediment balance, tides, storms, and vegetation) were integrated using the Coastal Hazard Wheel approach (CHW). Original datasets with global coverage were retrieved from the internet and from various research institutes. The data were processed and assigned to the CHW classes, so that the CHW method could be applied to assess coastal erosion hazard levels. The data can be viewed in the Coastal Hazard Wheel App (www.coastalhazardwheel.org) that also allows the coastal erosion hazard levels to be determined for each point at coastlines around the world. The application of the CHW with global open access data was tested for the Caribbean and Pacific coasts of Colombia and revealed a high to very high erosion hazard along 47% of the Caribbean coast and along 23% of the Pacific coast. The application provides additional information on capital stock near the coast, as a tentative indication of assets at risk. This approach provides a straightforward and uniform erosion hazard identification method that can be used for spatial planning on coastal developments at a regional scale.
a b s t r a c tThis paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW) is developed for worldwide application and is based on a specially designed coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS) to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure for applying the CHW methodology for national hazard assessments. The assessment shows that the coastline of Djibouti is characterized by extensive stretches with high or very high hazards of ecosystem disruption, mainly related to coral reefs and mangrove forests, while large sections along the coastlines of especially northern and southern Djibouti have high hazard levels for gradual inundation. The hazard of salt water intrusion is moderate along most of Djibouti's coastline, although groundwater availability is considered to be very sensitive to human ground water extraction. High or very high erosion hazards are associated with Djibouti's sedimentary plains, estuaries and river mouths, while very high flooding hazards are associated with the dry river mouths.
This paper presents the complete Coastal Hazard Wheel (CHW) system, developed for multi-hazardassessment and multi-hazard-management of coastal areas worldwide under a changing climate. The system is designed as a low-tech tool that can be used in areas with limited data availability and institutional capacity and is therefore especially suited for applications in developing countries. The CHW constitutes a key for determining the characteristics of a particular coastline, its hazard profile and possible management options, and the system can be used for local, regional and national hazard screening and management. The system is developed to assess the main coastal hazards in a single process and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system was initially presented in 2012 and based on a range of test-applications and feedback from coastal experts, the system has been further refined and developed into a complete hazard management tool. This paper therefore covers the coastal classification system used by the CHW, a standardized assessment procedure for implementation of multi-hazard-assessments, technical guidance on hazard management options and project cost examples. The paper thereby aims at providing an introduction to the use of the CHW system for assessing and managing coastal hazards.
This paper presents the application of a new methodology for coastal multi-hazard assessment & management under a changing global climate on the state of Karnataka, India. The recently published methodology termed the Coastal Hazard Wheel (CHW) is designed for local, regional and national hazard screening in areas with limited data availability, and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The application makes use of published geophysical data and remote sensing information and is showcasing how the CHW framework can be applied at a scale relevant for regional planning purposes. It uses a GIS approach to develop regional and sub-regional hazard maps as well as to produce relevant hazard risk data, and includes a discussion of uncertainties, limitations and management perspectives. The hazard assessment shows that 61 percent of Karnataka's coastline has a high or very high inherent hazard of erosion, making erosion the most prevalent coastal hazard. The hazards of flooding and salt water intrusion are also relatively widespread as 39 percent of Karnataka's coastline has a high or very high inherent hazard for both of these hazard types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.