The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane fusion events are essential for the formation of thylakoid membranes, proteins involved in membrane fusion have yet to be identified in photosynthetic cells or organelles. Here we show that IM30, a conserved chloroplast and cyanobacterial protein of approximately 30 kDa binds as an oligomeric ring in a well-defined geometry specifically to membranes containing anionic lipids. Triggered by Mg 2 þ , membrane binding causes destabilization and eventually results in membrane fusion. We propose that IM30 establishes contacts between internal membrane sites and promotes fusion to enable regulated exchange of proteins and/or lipids in cyanobacteria and chloroplasts.
The silaffin peptide R5 is instrumental to the mineralization of silica cell walls of diatom organisms. The peptide is also widely employed in biotechnology, for example, in the encapsulation of enzymes and for fusion proteins in tissue regeneration. Despite its scientific and technological importance, the interfacial structure of R5 during silica precipitation remains poorly understood. We herein elucidate the conformation of the peptide in its active form within silica sheets by interface-specific vibrational spectroscopy in combination with molecular dynamics simulations. Contrary to previous solution-state NMR studies, our data confirm that R5 maintains a defined structure when interacting with extended silica sheets. We show that the entire amino acid sequence of R5 interacts with silica during silica formation, leading to the intercalation of silica into the assembled peptide film.
Understanding the structure of proteins at surfaces is key in fields such as biomaterials research, biosensor design, membrane biophysics, and drug design. A particularly important factor is the orientation of proteins when bound to a particular surface. The orientation of the active site of enzymes or protein sensors and the availability of binding pockets within membrane proteins are important design parameters for engineers developing new sensors, surfaces, and drugs. Recently developed methods to probe protein orientation, including immunoessays and mass spectrometry, either lack structural resolution or require harsh experimental conditions. We here report a new method to track the absolute orientation of interfacial proteins using phase-resolved sum frequency generation spectroscopy in combination with molecular dynamics simulations and theoretical spectral calculations. As a model system we have determined the orientation of a helical lysine-leucine peptide at the air-water interface. The data show that the absolute orientation of the helix can be reliably determined even for orientations almost parallel to the surface.
Understanding
the assembly of proteins at the air-water interface
(AWI) informs the formation of protein films, emulsion properties,
and protein aggregation. Determination of protein conformation and
orientation at an interface is difficult to resolve with a single
experimental or simulation technique alone. To date, the interfacial
structure of even one of the most widely studied proteins, lysozyme,
at the AWI remains unresolved. In this study, molecular dynamics (MD)
simulations are used to determine if the protein adopts a side-on,
head-on, or axial orientation at the AWI with two different forcefields,
GROMOS-53a6 + SPC/E and a99SB-disp + TIP4P-D. Vibrational
sum frequency generation (SFG) spectroscopy experiments and spectral
SFG calculations validate consistency between the structure determined
from MD and experiments. Overall, we show with strong agreement that
lysozyme adopts an axial conformation at pH 7. Further, we provide
molecular-level insight as to how pH influences the binding domains
of lysozyme resulting in side-on adsorption near the isoelectric point
of the lysozyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.