IntroductionExisting mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users’ perspective on the device.Methods and analysisThis protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs.After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson’s disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users’ perspective on the deployed technology and relevance of the mobility assessment.Ethics and disseminationThe study has been granted ethics approval by the centre’s committees (London—Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv Sourasky Medical Centre; Medical Faculties of The University of Tübingen and of the University of Kiel). Data and algorithms will be made publicly available.Trial registration numberISRCTN (12246987).
Limited methodological agreement between sensor-based fall detection studies using body-worn sensors was identified. Published evidence-based support for commercially available fall detection devices is still lacking. A worldwide research group consensus is needed to address fundamental issues such as incident verification, the establishment of guidelines for fall reporting and the development of a common fall definition.
Falls are not an inevitable consequence of aging. The risk and rate of falls can be reduced. Recent improvements in smartphone technology enable implementation of a wide variety of services and applications, thus making the smartphone more of a digital companion than simply a communication tool. This paper presents the results obtained by the FARSEEING project where smartphones are one example of intervention in a population-based scenario. The applications developed take advantage of the smartphone-embedded inertial sensors and require that subjects wear the smartphone by means of a waist belt. The uFall Android application has been developed for monitoring the user's motor activities at home. The application does not require any direct interaction with the user and it is also capable of running a real-time fall-detection algorithm. uTUG is a stand-alone application for instrumenting the Timed Up and Go test, which is a test often included in fall risk assessment protocols. The application acts like a pocket-sized motion laboratory, since it is capable not only of recording the trial but also of processing the data and immediately displaying the results. uTUG is designed to be self-administrable at home.
Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice.
Falls are a major cause of injuries and deaths in older adults. Even when no injury occurs, about half of all older adults who fall are unable to get up without assistance. The extended period of lying on the floor often leads to medical complications, including muscle damage, dehydration, anxiety and fear of falling. Wearable sensor systems incorporating accelerometers and/or gyroscopes are designed to prevent long lies by automatically detecting and alerting care providers to the occurrence of a fall. Research groups have reported up to 100% accuracy in detecting falls in experimental settings. However, there is a lack of studies examining accuracy in the real-world setting. In this study, we examined the accuracy of a fall detection system based on real-world fall and non-fall data sets. Five young adults and 19 older adults went about their daily activities while wearing tri-axial accelerometers. Older adults experienced 10 unanticipated falls during the data collection. Approximately 400 hours of activities of daily living were recorded. We employed a machine learning algorithm, Support Vector Machine (SVM) classifier, to identify falls and non-fall events. We found that our system was able to detect 8 out of the 10 falls in older adults using signals from a single accelerometer (waist or sternum). Furthermore, our system did not report any false alarm during approximately 28.5 hours of recorded data from young adults. However, with older adults, the false positive rate among individuals ranged from 0 to 0.3 false alarms per hour. While our system showed higher fall detection and substantially lower false positive rate than the existing fall detection systems, there is a need for continuous efforts to collect real-world data within the target population to perform fall validation studies for fall detection systems on bigger real-world fall and non-fall datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.