We herein describe a facile and versatile synthetic route to the tetracyclic system of 6-substituted 5,6-dihydro-11H-pyrido[3,2-i]-1-azacarbazoles with promising anticancer properties. These derivatives are built up by an elegant one-step base-catalyzed synthetic procedure from commercially available building blocks. One additional step provides the corresponding skeleton hitherto unknown in the literature. The possibility to synthesize a large library of compounds with various substitution patterns utilizing this method underlines the importance of this synthetic procedure.
The synthesis of various new structures of a library of 11-substituted 6-amino-11,12-dihydrobenzo[c]phenanthridines (BP) and 11-substituted 6-aminobenzo[c]phenanthridines (BP-D) is presented. These structures, further synthetic modifications, and the preparation of follow-up products which delivered about 40 new derivatives are described. Their potential as antiproliferative drug candidates was investigated by comparison of NCI 60 developmental therapeutics program (DTP) human tumor cell line screening data based on the results of in vitro tumor cell growth inhibition, including about 40 hitherto unpublished compound test results with up to 60 cancer cell lines. NCI-COMPARE studies helped to suggest the modes of action of the highly active antiproliferative drugs. These findings are supported by in vitro biological investigations showing either inhibition of tubulin polymerization and depolymerization or topoisomerase inhibition. Together with physicochemical parameters of the drug candidates, structure-activity relationships are critically discussed. Tubulin interaction or inhibition of topoisomerase I and IIα/β activity are two rationales that can explain the antiproliferative activity observed in the NCI 60 DTP human tumor cell line screen. However, it can also be reasonably assumed that these compounds address several targets, thus prohibiting the identification of simple structure-activity relationships. The new structures described herein are thought to act as so-called multitarget drugs, thus being of special interest in the area of multidrug resistance.
Synthesis and Physicochemical Characterization of Novel 6-Aminopyrido[3,4-c][1,9]phenanthrolines as Aza-Analogues of Benzo[c]phenanthridines. -This work contains information on lipophilicity, solubility, drug-likeness, and cytotoxicity of the synthesized compounds. -(MEIER, C.; KOTTHAUS, J.; STENZEL, L.; GIRRESER, U.; HEBER, D.; CLEMENT*, B.; Tetrahedron 68 (2012) 44, 9105-9112, http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.