Surface acoustic wave magnetic field sensors based on guided Love waves using the ΔE effect of a magnetostrictive thin film have been shown to be promising candidates for the measurement of weak fields at low frequencies as required for biomagnetic applications or as current sensors benefitting from the large dynamic range and bandwidth. The deposition of soft magnetic films with high magnetostriction is, however, more challenging on piezoelectric substrates such as quartz than on silicon. Thermally induced anisotropic expansion during the deposition process or during post-deposition magnetic field annealing leads to uniaxial stresses acting on the films, which makes the precise control of magnetic anisotropy difficult. Accordingly, this work analyzes the influence of the deposition process and heat treatment on the performance of Love wave devices. ST-cut quartz based delay line surface acoustic wave sensors with a SiO2 guiding layer are employed, and a 200 nm layer of amorphous magnetostrictive (Fe90Co10)78Si12B10 is used as the sensitive element. Magneto-optical imaging is performed for magnetic domain characterization, and the sensor performance is characterized in terms of bias field dependent phase sensitivity and frequency dependent phase noise. By performing a low temperature deposition in an external magnetic field, considerable improvement in limits of detection at biomagnetic relevant frequencies down to 70 pT/Hz at 10 Hz and 25 pT/Hz at 100 Hz is achieved.
In this work, the first surface acoustic-wave-based magnetic field sensor using thin-film AlScN as piezoelectric material deposited on a silicon substrate is presented. The fabrication is based on standard semiconductor technology. The acoustically active area consists of an AlScN layer that can be excited with interdigital transducers, a smoothing SiO2 layer, and a magnetostrictive FeCoSiB film. The detection limit of this sensor is 2.4 nT/Hz at 10 Hz and 72 pT/Hz at 10 kHz at an input power of 20 dBm. The dynamic range was found to span from about ±1.7 mT to the corresponding limit of detection, leading to an interval of about 8 orders of magnitude. Fabrication, achieved sensitivity, and noise floor of the sensors are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.