The development of a new joining technology, which is used to manufacture high strength hybrid constructions with thermoplastic composites (FRP) and metals, is introduced. Similar to natural regulation effects at trees, fibers around the FRP joint become aligned along the lines of force and will not be destroyed by the joining process. This is achieved by the local utilization of the specific plastic flow properties of the FRT and metal component. Compared with usual joining methods—such as flow drill screws, blind and self-piercing rivets—noticeably higher tensile properties can be realized through the novel process management. The load-bearing capability increasing effect could be proved on hybrid joints with hot-dip galvanized steel HX420LAD and orthotropic glass—as well as carbon—fiber reinforced plastics. The results, which were determined in tensile-shear and cross-shear tests according to DIN EN ISO 14273 and DIN EN ISO 14272, are compared with holding loads of established joining techniques with similar joining point diameter and material combinations.
Reliable line production processes and simulation tools play a central role for the structural integration of thermoplastic composites in advanced lightweight constructions. Provided that material-adapted joining technologies are available, they can be applied in heavy-duty multi-material designs (MMD). A load-adapted approach was implemented into the new fully automatic and faulttolerant thermo mechanical flow drill joining (FDJ) concept. With this method it is possible to manufacture reproducible high strength FRP/metal-joints within short cycle times and without use of extra joining elements for the first time. The analysis of FDJ joints requires a simplified model of the joint to enable efficient numerical simulations. The present work introduces a strategy in modeling a finite-element based analogous-approach for FDJ-joints with glass fiber reinforced polypropylene and high-strength steel. Combined with a newly developed section-force related failure criterion, it is possible to predict the fundamental failure behavior in multi-axial stress states. The functionality of the holistic approach is illustrated by a demonstrator that represents a part of a car body-in-white structure. The comparison of simulated and experimentally determined failure loads proves the applicability for several combined load cases.
A new constructive and technological approach was developed for the efficient production of largedimensioned, curved freeform formworks, which allow the manufacturing of single and doublecurved textile reinforced concrete elements. The approach is based on a flexible, multi-layered formwork system, which consists of glass-fibre reinforced plastic (GFRP). Using the unusual structural behavior caused by anisotropy, these GFRP formwork elements permit a specific adjustment of defined curvature. The system design of the developed GFRP formwork and the concrete-lightweight-elements with stabilized spacer fabric was examined exhaustively. Prototypical curved freeform surfaces with different curvature radii were designed, numerically computed and produced. Furthermore, the fabric's contour accuracy of the fabric was verified, and its integration was adjusted to loads.
A new constructive and technological approach was developed for the efficient production of large-dimensioned, curved freeform formworks, which allows the manufacturing of single and double-curved textile reinforced concrete elements. The approach is based on a flexible, multi-layered formwork system, which consists of glass-fibre reinforced plastic (GFRP). Using the unusual structural behavior caused by anisotropy, these GFRP formwork elements permit a specific adjustment of defined curvature. The system design of the developed GFRP formwork and the concrete-lightweight-elements with stabilized spacer fabric was examined exhaustively. Prototypical curved freeform surfaces with different curvature radii were designed, numerically computed and produced. Furthermore, the fabric's contour accuracy of the fabric was verified, and its integration was adjusted to loads. The developed textile reinforced concrete (TRC) had 3-point bending tensile strength of 41.51 MPa. Beyond that, it was ensured that the TRC had a high durability, which has been shown by the capillary suction of de-icing solution and freeze thaw test with a total amount of scaled material of 1172 g/m² and a relative dynamic E-Modulus of 100% after 28 freeze-thaw cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.