A model is presented taking into account off line-of-action, non-linear wheel stiffness by using the finite element method, and elasticity coupling between the gear teeth. The contact points are determined by searching the common normal using the undeformed, but otherwise true theoretical, tooth shapes where the teeth have a tip rounding to prevent contact singularity in off line-of-action points. A comparative study is included, which shows the important influence of the elastic coupling and off line-of-action.
This paper presents a method to calculate the forces in a chain and, thus, the resulting load distribution along the sprockets in a chain transmission working at a moderate or high speed. When the chain drive is loaded, the rollers that contact the sprockets will move along the flanks to different height positions. There are mainly two different ways to determine the actual positions: to assume the positions or to use force equilibrium and to calculate the positions. To find the correct solution the geometry and the force equilibrium are used which will give each roller's position, along the flank. This method demands knowledge of all parts of the chain, even the slack part. Therefore it has been necessary to model both the connecting tight and the slack spans in which power between the two sprockets is transmitted. The gravitational force acting at the chain has been included in the complete model so that the position of the rollers and the forces in the links at the slack span can be calculated. The elastic deformation in the chain has also been included. The moment of inertia in the two sprockets and in the outer geometry has been taken into account, but not the inertia forces in the chain.
A model is presented in which the oscillations, and the forces thus produced, in a chain drive, working at moderate and high speed, can be calculated. Since the outer system affects the result it has been necessary to include this in the model. The mass of the chain is included in the model and both the gravitational forces and the inertia forces in the chain are taken into account. The elasticity in the links is included. The sprockets are connected by two spans, both of which have to be included in the model to fulfill the equilibrium equations for the rollers in contact with the sprockets. The position of the chain is given by the geometric conditions as well as the equilibrium condition. On the slack side a chain tensioner is used to reduce the transverse oscillation, which occur at higher speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.