Maximal heart rate (HR max ) continues to be an important measure of adequate effort during an exercise test. The aim of this study was to improve the accuracy of HR max prediction using a machine learning (ML) approach. Methods: We used a sample from the Fitness Registry of the Importance of Exercise National Database, which included 17 325 apparently healthy individuals (81% males) who performed a maximal cardiopulmonary exercise test. Two standard formulas for HR max prediction were tested: Formula1 = 220 − age (yr), root-mean-squared error (RMSE) 21.9, relative root-mean-squared error (RRMSE) 1.1; and Formula2 = 209.3 − 0.72 × age (yr), RMSE 22.7 and RRMSE 1.1. For ML model prediction, we used age, weight, height, resting HR, and systolic and diastolic blood pressure. The following ML algorithms to predict HR max were applied: lasso regression (LR), neural networks (NN), support vector machine (SVM) and random forests (RF). An evaluation was performed using cross-validation and by computing the RMSE and RRMSE, Pearson correlation, and Bland-Altman plots. The best predictive model was explained with Shapley Additive Explanations (SHAP). Results: The HR max for the cohort was 162 ± 20 bpm. All ML models improved HR max prediction and reduced RMSE and RRMSE compared with Formula1 (LR: 20.2%, NN: 20.4%, SVM: 22.2%, and RF: 24.7%). The predictions of all algorithms significantly correlated with HR max (r = 0.49, 0.51, 0.54, 0.57, respectively; P < .001). Bland-Altman analysis demonstrated lower bias and 95% CI for all ML models in comparison with standard equations. The SHAP explanation showed a high impact of all selected variables. Conclusions: Machine learning, particularly the RF model, improved prediction of HR max using readily available measures. This approach should be considered for clinical application to refine HR max prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.