The FASSET project was launched in November 2000 under the EC 5th Framework Programme to develop a framework for the assessment of environmental impact of ionising radiation in European ecosystems. It involved 15 organisations in seven European countries and delivered its final report in spring 2004. The project set out to organise radioecological and radiobiological data into a logical structure that would facilitate the assessment of likely effects on non-human biota resulting from known or postulated depositions of radionuclides in the environment. The project included an overview of 20 pathway-based environmental assessment systems targeted at radioactive substances, or at hazardous substances in general. The resulting framework includes the following fundamental elements: source characterisation; description of seven major European ecosystems; selection of a number of reference organisms on the basis of prior ecosystem and exposure analysis; environmental transfer analysis; dosimetric considerations; effects analysis; and general guidance on interpretation including consideration of uncertainties. The project has used existing information supplemented with development in some areas, e.g. Monte Carlo calculations to derive dose conversion coefficients, model development, and the building of an effects database (FRED, the FASSET Radiation Effects Database). On the basis of experience from FASSET and other recent programmes, it can be concluded that (i) there is substantial agreement in terms of conceptual approaches between different frameworks currently in use or proposed, (ii) differences in technical approaches can be largely attributed to differences in ecosystems of concern or in national regulatory requirements, (iii) sufficient knowledge is available to scientifically justify assessments following the Framework structure, but (iv) significant data gaps exist for environmental transfer of key nuclides as well as for effects data for key wildlife groups at environmentally relevant dose rates. This paper briefly describes the overall content of the FASSET Framework, as well as highlighting a few important future challenges.
In this report, the Commission describes its framework for protection of the environment and how it should be applied within the Commission’s system of protection. The report expands upon its objectives in relation to protection of the environment, in so far as it relates to the protection of animals and plants (biota) in their natural environment, and how these can be met by the use of Reference Animals and Plants (RAPs); their Derived Consideration Reference Levels (DCRLs), which relate radiation effects to doses over and above their normal local background natural radiation levels; and different potential pathways of exposure. The report explains the different types of exposure situations to which its recommendations apply; the key principles that are relevant to protection of the environment; and hence how reference values based on the use of DCRLs can be used to inform on the appropriate level of effort relevant to different exposure situations. Further recommendations are made with regard to how the Commission’s recommendations can be implemented to satisfy different forms of environmental protection objectives, which may require the use of representative organisms specific to a site, and how these may be compared with the reference values. Additional information is also given with regard to, in particular, communication with other interested parties and stakeholders. Issues that may arise in relation to compliance are also discussed, and the final chapter discusses the overall implications of the Commission’s work in this area to date. Appendices A and B provide some numerical information relating to the RAPs. Annex C considers various existing types of environmental protection legislation currently in place in relation to large industrial sites and practices, and the various ways in which wildlife are protected from various threats arising from such sites.
This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences the application of the protection system over the different phases in the life time of a disposal facility is the level of oversight or 'watchful care' that is present. The level of oversight affects the capability to control the source, i.e. the waste and the repository, and to avoid or reduce potential exposures. Three main time frames are considered: time of direct oversight, when the disposal facility is being implemented and is under active supervision; time of indirect oversight, when the disposal facility is sealed and oversight is being exercised by regulators or special administrative bodies or society at large to provide additional assurance on behalf of society; and time of no oversight, when oversight is no longer exercised in case memory of the disposal facility is lost.
The approach to protection of the environment may vary considerably depending on ethical basis, methodological approach, and identification of endpoints and protective targets. The International Commission on Radiological Protection (ICRP) reviewed these issues in Publication 91, 'A framework for assessing the impact of ionising radiation on non-human species', published in 2003. At the same time, ICRP proposed that a possible future ICRP system addressing environmental assessment and protection would focus on biota, that the system should be effect-based so that any reasoning about adequate protection would be derived from firm understanding of harm at different exposure levels, and that the system should be based on data sets for Reference Animals and Plants. ICRP has thus chosen to approach environmental protection on the basis of biology, and further developed the approach in Publications 103, 108 and 114. This paper explores the biological basis for the ICRP system of environmental protection from the viewpoints of: the effects endpoints of concern; the hierarchy of biological organisation; adequate and appropriate protective targets; and the derivation of benchmark dose (rates) to guide protective efforts.
The International Commission on Radiological Protection (ICRP) established Committee 5 in 2005 in response to the need to provide direct demonstration of environmental protection from radiation in accordance with national law and international agreements. The development of the ICRP system for environmental protection was facilitated by research over the previous decades, as well as by ICRP's evaluation of the ethical and philosophical basis for environmental protection as laid out in ICRP Publication 91. The 2007 Recommendations (Publication 103) incorporated environmental protection as one of the integral elements of the radiation protection system. Over a relatively short time, the system has evolved to incorporate a set of 12 Reference Animals and Plants (RAPs), which is a small enough number to develop comprehensive databases for each RAP, but wide ranging enough to provide some insight into radiation impact and protection against such impact, as appropriate, in terrestrial, freshwater, and marine ecosystems. As necessary, the databases can be used to derive supplementary databases for Representative Organisms typical for a particular exposure situation of concern or under study. The system, to date, details biology of the RAPs (Publication 108); outlines transfer factors for estimation of internal concentrations of radionuclides of environmental significance under different situations (Publication 114); provides further information (Publication 108) on dosimetry, biological effects, and derived consideration reference levels (bands of environmental dose rates where potential detrimental effects may deserve attention); and provides information on application of the system in planned, emergency, and existing exposure situations (Publication 124). Currently, a review of experimental determinations of relative biological effectiveness, to guide derivation of specific weighting factors for use in environmental radiation protection if possible and necessary, is being concluded, as is work on improved dosimetry. Further work in this area involves consolidation of databases, recommendations for derivation of specific databases for Representative Organisms on the basis of the RAP data, and recommendations for application of the system to environmental protection in relation to certain human activities of potential environmental concern. Consideration needs to be made for the wider range of ecosystem effects that may be covered in ecological risk assessments, which incorporate the complete suite of stressors that result from human activity, and their effects, to understand the role of radiation effects in this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.