Objective. Thyroid hormones play an important role in the development and maturation of the central nervous symptom and their failure in the prenatal period leading to an irreversible brain damage. Their effect on the brain of adult, however, has not been fully studied. With the discovery of neurogenesis in the adult brain, many recent studies have been focused on the understanding the basic mechanisms controlling this process. Many neurogenesis regulatory genes are not only transcribed but also translated into the blood cells. The goal of our study was to analyze the transcriptional activity of neurogenesis regulatory genes in peripheral blood cells in patients with thyroid pathology. Methods. The pathway-specific PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) was used to identify and validate the neurogenesis regulatory genes expression in patients with thyroid pathology and control group. Results. The results showed that GFRA3, NGFR, NRG1, NTF3, NTRK1, and NTRK2 significantly decreased their expression in patients with autoimmune thyroiditis with rising serum of autoantibodies. The patients with primary hypothyroidism, as a result of autoimmune thyroiditis and postoperative hypothyroidism, had significantly lower expression of FGF2, NGFR, NRG1, and NTF3. The mRNA level of CNTFR was markedly decreased in the group of patients with postoperative hypothyroidism. No change in the ARTN, PSPN, TFG, MT3, and NELL1 expression was observed in any group of patients. Conclusion. The finding indicates that a decrease in thyroid hormones and a high level of autoantibodies, such as anti-thyroglobulin antibody and anti-thyroid peroxidase antibody, affect the expression of mRNA neurogenesis-regulated genes in patients with thyroid pathology.
Vitamin D is known to alter immune regulation. It binds to the vitamin D receptors (VDR) expressed on T lymphocytes and macrophages. In individuals with Hashimoto’s thyroiditis, serum vitamin D levels were found to be lower compared to healthy controls. The study’s objective was to investigate the association between VDR gene polymorphism (rs2228570) with blood serum levels of 25-OH vitamin D in patients with thyroid pathology from western Ukraine. The study involved a total of 153 patients with various forms of thyroid pathology. 25-OH vitamin D levels in the serum of the patients and healthy individuals were quantified with ELISA using the 25-OH vitamin D Total (Vit D-Direct) Test System ELISA Kit (Monobind Inc.®, United States, Product Code: 9425-300) on the EIA Reader Sirio S (Seac, Italy). Genotyping of the VDR (rs2228570) gene polymorphism was performed using TaqMan probes and TaqMan Genotyping Master Mix (4371355) on CFX96™Real-Time PCR Detection System (Bio-Rad Laboratories, Inc., USA). Polymerase chain reaction (PCR) for TaqMan genotyping was carried out according to the kit instructions (Applied Biosystems, USA). Our research identified that that genotype variants of VDR rs2228570 are not risk factors for reduced serum 25-OH vitamin D or vitamin D deficiency in patients with various forms of thyroid pathology patients in the West-Ukrainian population. Vitamin D levels were significantly lower in the carriers of AA and AG genotypes with hypothyroidism caused by autoimmune thyroiditis. In AA genotype carriers with postoperative hypothyroidism, 25-OH vitamin D levels were significantly lower compared to AA genotype carriers with autoimmune thyroiditis.
The thyroid hormone plays a vital role in the development and maturation of the nervous system not only during prenatal and perinatal age but also in adults. “Peripheral marker hypothesis” revealed that gene expression changes in some regions of the brain are reflected into the peripheral blood lymphocytes. The objective of the study was to investigate changes in the gene expression profile of neuropeptides and their receptors in patients with different forms of thyroid pathology. One hundred fifty-three patients with thyroid pathology were enrolled in the study. They were divided into three groups: group 1 included 16 patients with postoperative hypothyroidism, group 2 included 65 patients with hypothyroidism resulting from autoimmune thyroiditis (AIT), and group 3 included 72 patients with AIT and elevated levels of anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies in the serum. We used a pathway-specific polymerase chain reaction (PCR) array (RT2 Profiler™ PCR Array Human Neurotrophins & Receptors, QIAGEN, Germany) to identify and verify neuropeptides and receptors pathway-focused gene expression in 12 individuals that were randomly selected from each group using real-time PCR. Our research identified that patients with postoperative hypothyroidism had a considerably increased expression of NPY1R, NTSR1, and NPY4R. The patients with hypothyroidism caused by autoimmune thyroiditis had considerably lower expression of NTSR1, while the expression of NPY1R increased. The mRNA levels of NPY2R and PNOC increased in the patients with elevated levels of autoantibodies anti-Tg and anti-TPO in the serum, and mRNA levels of NPY1R and NTSR1 decreased in this group of patients.
BACKGROUND: Thyroid hormones are key regulators of essential cellular processes including proliferation, differentiation, and finally apoptosis. AIM: The aim of study was to detect changes in the expression of apoptosis and cell cycle pathway-focused genes in patients with different forms of thyroid pathology. PATIENTS AND METHODS: 36 patients with thyroid pathology were enrolled in the study. We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify apoptosis and cell cycle pathway-focused genes expression in patients with postoperative hypothyroidism, hypothyroidism as a result of autoimmune thyroiditis (AIT) and AIT with elevated serum an anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies. RESULTS: It was shown that patients with elevated serum anti-Tg and anti-TPO antibodies and with hypothyroidism resulting from AIT had a significantly lower expression of FAS, TGFB, TP53, TGFA, while the expression of CD40 was increased. The mRNA levels of BCL2 and BAX decreased in the patients with elevated serum anti-Tg and anti-TPO antibodies and increased in the patients with hypothyroidism resulting from AIT and postoperative hypothyroidism. The patients with hypothyroidism resulting from AIT and postoperative hypothyroidism had significantly lower expression of HSPB1. NF1 expression did not change in all groups of patients. CONCLUSION: The results of this study demonstrate that AIT and hypothyroidism affect the mRNA-level expression of apoptosis and cell cycle pathway-focused genes in gene specific manner and that these changes to gene expression can be responsible for the apoptosis signs and symptoms associated with thyroid pathology.
Objective. Brain-derived neurotrophic factor (BDNF) is identified as an important growth factor involved in learning and memory. Patients with Hashimoto’s thyroiditis can suffer from cognitive dysfunction, whereas BDNF is directly regulated by thyroid hormones. It seems reasonable to propose that changes in BDNF expression underlie some of the persistent neurological impairments associated with hypothyroidism. Methods. The study involved a total of 153 patients with various forms of thyroid pathology. BDNF levels in the sera of the patients and healthy individuals were quantified using enzyme-linked immunosorbent assay with highly sensitive Human BDNF ELISA Kit. Genotyping of the BDNF (rs6265) gene polymorphism using TaqMan probes and TaqMan Genotyping Master Mix (4371355) on CFX96™Real-Time PCR Detection System. Polymerase chain reaction (PCR) for TaqMan genotyping was carried out according to the kit instructions. Results. Distribution rs6265 variants in the patients depending on the different types of thyroid pathology showed no significant difference in the relative frequency of BDNF polymorphic variants. Presence of hypothyroidism, regardless of its cause (autoimmune or postoperative), there was a decrease in the serum BDNF levels in all genotypes carriers compared with the control group. The analysis of the correlation between BDNF levels and the levels of thyroid-stimulating hormone (TSH), thyroxine (T4), anti-thyroglobulin (anti-Tg), and anti-thyroid peroxidase (anti-TPO) antibodies showed a significant inverse relationship between BDNF and TSH levels (p<0.001), a direct correlation between BDNF and T4 levels in the blood (p<0.001), and a weak direct relationship between anti-Tg and BDNF levels (p=0.0157). Conclusion. The C allele presence is protective and associates with the lowest chances for reduced serum BDNF levels in thyroid pathology patients in the West-Ukrainian population. However, the T-allele increases the risk of low BDNF levels almost 10 times in observed subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.