This work addresses the multi‐objective route planning and charging problem for Battery Electric Vehicles (BEVs). The proposed solution is based on the NSGA‐II algorithm to derive the Pareto‐optimal set of eco‐routes with the minimum travel and charging time, distance, energy consumption and charging costs while complying with the constraints related to the battery State of Charge (SoC) and the status of charging stations. Influencing factors, such as, vehicle and battery parameters, weather conditions, driver behaviour, road grade, Time Of Use (TOU) electricity cost, and Charging Stations (CS) status and type, are taken into account. The final results of the proposed method are compared with the well‐established simulator SUMO.
Electric Vehicles (EVs) are regarded to be among the most environmentally and economically efficient transportation solutions. However, barriers and range limitations hinder this technology’s progress and deployment. In this paper, we examine EV route planning to derive optimal routes considering energy consumption by analyzing historical trajectory data. More specifically, we propose a novel approach for EV route planning that considers real-time traffic incidents, road topology, charging station locations during battery failure, and finally, traffic flow prediction extracted from historical trajectory data to generate energy maps. Our approach consists of four phases: the off-line phase which aims to build the energy graph, the application of the A* algorithm to deliver the optimal EV path, the NEAT trajectory clustering which aims to produce dense trajectory clusters for a given period of the day, and finally, the on-line phase based on our algorithm to plan an optimal EV path based on real traffic incidents, dense trajectory clusters, road topology information, vehicle characteristics, and charging station locations. We set up experiments on real cases to establish the optimal route for electric cars, demonstrating the effectiveness and efficiency of our proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.