This paper proposes a novel patient-specific real-time automatic epileptic seizure onset detection, using both scalp and intracranial electroencephalogram (EEG). The proposed technique obtains harmonic multiresolution and self-similarity-based fractal features from EEG for robust seizure onset detection. A fast wavelet decomposition method, known as harmonic wavelet packet transform (HWPT), is computed based on Fourier transform to achieve higher frequency resolutions without recursive calculations. Similarly, fractal dimension (FD) estimates are obtained to capture self-similar repetitive patterns in the EEG signal. Both FD and HWPT energy features across all EEG channels at each epoch are organized following the spatial information due to electrode placement on the skull. The final feature vector combines feature configurations of each epoch within the specified moving window to reflect the temporal information of EEG. Finally, relevance vector machine is used to classify the feature vectors due to its efficiency in classifying sparse, yet high-dimensional data sets. The algorithm is evaluated using two publicly available long-term scalp EEG (data set A) and short-term intracranial and scalp EEG (data set B) databases. The proposed algorithm is effective in seizure onset detection with 96% sensitivity, 0.1 per hour median false detection rate, and 1.89 s average detection latency, respectively. Results obtained from analyzing the short-term data offer 99.8% classification accuracy. These results demonstrate that the proposed method is effective with both short- and long-term EEG signal analyzes recorded with either scalp or intracranial modes, respectively. Finally, the use of less computationally intensive feature extraction techniques enables faster seizure onset detection when compared with similar techniques in the literature, indicating potential usage in real-time applications.
A brain tumor is an uncontrolled growth of cancerous cells in the brain. Accurate segmentation and classification of tumors are critical for subsequent prognosis and treatment planning. This work proposes context aware deep learning for brain tumor segmentation, subtype classification, and overall survival prediction using structural multimodal magnetic resonance images (mMRI). We first propose a 3D context aware deep learning, that considers uncertainty of tumor location in the radiology mMRI image sub-regions, to obtain tumor segmentation. We then apply a regular 3D convolutional neural network (CNN) on the tumor segments to achieve tumor subtype classification. Finally, we perform survival prediction using a hybrid method of deep learning and machine learning. To evaluate the performance, we apply the proposed methods to the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) dataset for tumor segmentation and overall survival prediction, and to the dataset of the Computational Precision Medicine Radiology-Pathology (CPM-RadPath) Challenge on Brain Tumor Classification 2019 for tumor classification. We also perform an extensive performance evaluation based on popular evaluation metrics, such as Dice score coefficient, Hausdorff distance at percentile 95 (HD95), classification accuracy, and mean square error. The results suggest that the proposed method offers robust tumor segmentation and survival prediction, respectively. Furthermore, the tumor classification results in this work is ranked at second place in the testing phase of the 2019 CPM-RadPath global challenge.
Glioblastoma is recognized as World Health Organization (WHO) grade IV glioma with an aggressive growth pattern. The current clinical practice in diagnosis and prognosis of Glioblastoma using MRI involves multiple steps including manual tumor sizing. Accurate identification and segmentation of multiple abnormal tissues within tumor volume in MRI is essential for precise survival prediction. Manual tumor and abnormal tissue detection and sizing are tedious, and subject to inter-observer variability. Consequently, this work proposes a fully automated MRI-based glioblastoma and abnormal tissue segmentation, and survival prediction framework. The framework includes radiomics feature-guided deep neural network methods for tumor tissue segmentation; followed by survival regression and classification using these abnormal tumor tissue segments and other relevant clinical features. The proposed multiple abnormal tumor tissue segmentation step effectively fuses feature-based and feature-guided deep radiomics information in structural MRI. The survival prediction step includes two representative survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) global challenges in 2017 and 2018. The best overall survival pipeline in the proposed framework achieves leave-one-out cross-validation (LOOCV) accuracy of 0.73 for training datasets and 0.68 for validation datasets, respectively. These training and validation accuracies for tumor patient survival prediction are among the highest reported in literature. Finally, a critical analysis of radiomics features and efficacy of these features in segmentation and survival prediction performance is presented as lessons learned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.