Death receptors can trigger cell demise dependent or independent of caspases. In WEHI-S fibrosarcoma cells, tumor necrosis factor (TNF) induced an increase in cytosolic cathepsin B activity followed by death with apoptotic features. Surprisingly, this process was enhanced by low, but effectively inhibiting, concentrations of pan-caspase inhibitors. Contrary to caspase inhibitors, a panel of pharmacological cathepsin B inhibitors, the endogenous cathepsin inhibitor cystatin A as well as antisense-mediated depletion of cathepsin B rescued WEHI-S cells from apoptosis triggered by TNF or TNF-related apoptosis-inducing ligand. Thus, cathepsin B can take over the role of the dominant execution protease in death receptor-induced apoptosis. The conservation of this alternative execution pathway was further examined in other tumor cell lines. Here, cathepsin B acted as an essential downstream mediator of TNF-triggered and caspase-initiated apoptosis cascade, whereas apoptosis of primary cells was only minimally dependent on cathepsin B. These data imply that cathepsin B, which is commonly overexpressed in human primary tumors, may have two opposing roles in malignancy, reducing it by its proapoptotic features and enhancing it by its known facilitation of invasion.
Arachidonic acid (AA) generated by cytosolic phospholipase A 2 (cPLA 2 ) has been suggested to function as a second messenger in tumor necrosis factor (TNF)-induced death signaling. Here, we show that cathepsin B-like proteases are required for the TNF-induced AA release in transformed cells. Pharmaceutical inhibitors of cathepsin B blocked TNF-induced AA release in human breast (MCF-7S1) and cervix (ME-180as) carcinoma as well as murine fibrosarcoma (WEHI-S) cells. Furthermore, TNF-induced AA release was significantly reduced in cathepsin B-deficient immortalized murine embryonic fibroblasts. Employing cPLA 2 -deficient MCF-7S1 cells expressing ectopic cPLA 2 or cPLA 2 -deficient immortalized murine embryonic fibroblasts, we showed that cPLA 2 is dispensable for TNF-induced AA release and death in these cells. Furthermore, TNF-induced cathepsin B-dependent AA release could be dissociated from the cathepsin B-independent cell death in MCF-7S1 cells, whereas both events required cathepsin B activity in other cell lines tested. These data suggest that cathepsin B inhibitors may prove useful not only in the direct control of cell death but also in limiting the damageassociated inflammation.
The development of resistance to host defense mechanisms such as tumor necrosis factor (TNF)-and Fas-mediated apoptosis of transformed or virus-infected cells may be a critical component in the development of disease. To find genes that protect cells from apoptosis, we used an expression cloning strategy and identified BHRF1, an Epstein-Barr virus (EBV) early-lytic-cycle protein with distant homology to Bcl-2, as an antiapoptosis protein. Expression of BHRF1 in MCF-Fas cells conferred nearly complete resistance against both anti-Fas antibody and TNF-mediated apoptosis. In addition, BHRF1 protected these cells from monocytemediated killing but failed to protect them from killing mediated by lymphokine-activated killer cells. The ability of BHRF1 to protect MCF-Fas cells from apoptosis induced by various stimuli was identical to that of Bcl-2 and Bcl-x L . Moreover, the mechanism of action of BHRF1 resembled that of Bcl-2 and Bcl-x L as it inhibited TNF-and anti-Fas-induced activation of two enzymes participating in the apoptosis pathway, cytosolic phospholipase A 2 and caspase-3/CPP32, but did not interfere with the activation of NF-B-like transcription factors. A putative function of BHRF1 in EBV-infected epithelial cells may be to protect virusinfected cells from TNF-and/or anti-Fas-induced cell death in order to maximize virus production. Surprisingly, expression of neither BHRF1 nor Bcl-2 in a B-cell line, BJAB, protected the cells from anti-Fas-mediated apoptosis even though they increased the survival of serum-starved cells. Thus, the protective role of BHRF1against apoptosis resembles that of Bcl-2 in being cell type specific and dependent on the apoptotic stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.