Multidimensional data analysis or On-line analytical processing (OLAP) offers a single subject-oriented source for analyzing summary data based on various dimensions. We demonstrate that the OLAP approach gives a promising starting point for advanced analysis and comparison among summary data in informetrics applications. At the moment there is no single precise, commonly accepted logical/conceptual model for multidimensional analysis. This is because the requirements of applications vary considerably. We develop a conceptual/logical multidimensional model for supporting the complex and unpredictable needs of informetrics. Summary data are considered with respect of some dimensions. By changing dimensions the user may construct other views on the same summary data. We develop a multidimensional query language whose basic idea is to support the definition of views in a way, which is natural and intuitive for lay users in the informetrics area. We show that this view-oriented query language has a great expressive power and its degree of declarativity is greater than in contemporary operation-oriented or SQL (Structured Query Language)-like OLAP query languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.