The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
We quantified release rates of carbon (C), nitrogen (N) and phosphorus (P) waste from Norwegian salmon farms in 2009 in order to evaluate the theoretical environmental influence on surrounding waters and the potential for integrated multi-trophic aquaculture (IMTA) driven by salmon aquaculture. Of the total feed input, 70% C, 62% N and 70% P were released into the environment, equivalent to an annual discharge of about 404 000, 50 600 and 9400 t of C, N and P, respectively, based on total salmon production of 1.02 × 10 6 t. We predicted that 48% of feed C was respired as CO 2 , 45% of feed N was excreted as dissolved inorganic N (DIN), and 18% of feed P was excreted as dissolved inorganic P (DIP). Approximately 44% of feed P was released as particles, dominating solid wastes. The mean food conversion ratio (feed supplied per fish produced) of Norwegian salmon farms was 1.16 ± 0.08 SE in 2009. Estimates of the potential for IMTA driven by salmon farming showed a far higher potential for seaweed production based on the released DIN than for mussel production based on released appropriately sized particulate organic carbon (POC). The daily volumetric loading rates of DIN from salmon farms (range for counties: 40 to 501 µg N m −3 d −1 ) were <15% of the natural loading rate of nitrate from deep water, suggesting that the nutrient loading rate is within safe limits.KEY WORDS: Cage aquaculture · Atlantic salmon · Nutrient wastes · Feed conversion ratio · FCR · Integrated multi-trophic aquaculture · IMTA · Seaweed · Blue mussels Resale or republication not permitted without written consent of the publisher
During the Norwegian young sea ICE expedition (N‐ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80°N. This pack ice consisted of a mix of second year, first year, and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter‐spring‐summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature‐driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate toward the bottom and initiate the ice algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the dominant ice diatom Nitzschia frigida. The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift toward a seasonally ice‐free Arctic Ocean.
The Arctic Ocean is rapidly changing from thicker multiyear to thinner first‐year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5–81.8°N) in May–June 2015 during the Norwegian young sea ICE expedition (N‐ICE2015). We measured downwelling incident and ice‐transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)‐protecting mycosporine‐like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m−3, mean 4.5 ± 7.8 mg m−3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m−2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high‐light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.