Semiempirical orthogonalization-corrected
methods (OM1, OM2, and
OM3) go beyond the standard MNDO model by explicitly including additional
interactions into the Fock matrix in an approximate manner (Pauli
repulsion, penetration effects, and core–valence interactions),
which yields systematic improvements both for ground-state and excited-state
properties. In this Article, we describe the underlying theoretical
formalism of the OMx methods and their implementation
in full detail, and we report all relevant OMx parameters
for hydrogen, carbon, nitrogen, oxygen, and fluorine. For a standard
set of mostly organic molecules commonly used in semiempirical method
development, the OMx results are found to be superior
to those from standard MNDO-type methods. Parametrized Grimme-type
dispersion corrections can be added to OM2 and OM3 energies to provide
a realistic treatment of noncovalent interaction energies, as demonstrated
for the complexes in the S22 and S66×8 test sets.
The semiempirical
orthogonalization-corrected OMx methods (OM1, OM2,
and OM3) go beyond the standard MNDO model by
including additional interactions in the electronic structure calculation.
When augmented with empirical dispersion corrections, the resulting
OMx-Dn approaches offer a fast and
robust treatment of noncovalent interactions. Here we evaluate the
performance of the OMx and OMx-Dn methods for a variety of ground-state properties using
a large and diverse collection of benchmark sets from the literature,
with a total of 13035 original and derived reference data. Extensive
comparisons are made with the results from established semiempirical
methods (MNDO, AM1, PM3, PM6, and PM7) that also use the NDDO (neglect
of diatomic differential overlap) integral approximation. Statistical
evaluations show that the OMx and OMx-Dn methods outperform the other methods for most
of the benchmark sets.
We report a computational study on the photochemistry of the prototypical aromatic Schiff base salicylideneaniline in the gas phase using static electronic structure calculations (TDDFT, OM2/MRCI) and surface-hopping dynamics simulations (OM2/MRCI). Upon photoexcitation of the most stable cis-enol tautomer into the bright S1 state, we find an ultrafast excited-state proton transfer that is complete within tens of femtoseconds, without any C═N double bond isomerization. The internal conversion of the resulting S1 cis-keto species is initiated by an out-of-plane motion around the C-C single bond, which guides the molecule toward a conical intersection that provides an efficient deactivation channel to the ground state. We propose that the ease of this C-C single bond rotation regulates fluorescence quenching and photocoloration in condensed-phase environments. In line with previous work, we find the S1 cis-keto conformer to be responsible for fluorescence, especially in rigid surroundings. The S0 cis-keto species is a transient photoproduct, while the stable S0 trans-keto photoproduct is responsible for photochromism. The trajectory calculations yield roughly equal amounts of the S0 cis-enol and trans-keto photoproducts. Methodologically, full-dimensional nonadiabatic dynamics simulations are found necessary to capture the preferences among competitive channels and to gain detailed mechanistic insight into Schiff base photochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.