Tree species’ composition of forests is essential in forest management and nature conservation. We aimed to identify the tree species structure of a floodplain forest area using a hyperspectral image. We proposed an efficient novel strategy including the testing of three dimension reduction (DR) methods: Principal Component Analysis, Minimum Noise Fraction (MNF) and Indipendent Component Analysis with five machine learning (ML) algorithms (Maximum Likelihood Classifier, Support Vector Classification, Support Vector Machine, Random Forest and Artificial Neural Network) to find the most accurate outcome; altogether 300 models were calculated. Post-classification was applied by combining the multiresolution segmentation and filtering. MNF was the most efficient DR technique, and at least 7 components were needed to gain an overall accuracy (OA) of > 75%. Forty-five models had > 80% OAs; MNF was 43, and the Maximum Likelihood was 19 times among these models. Best classification belonged to MNF with 10 components and Maximum Likelihood classifier with the OA of 83.3%. Post-classification increased the OA to 86.1%. We quantified the differences among the possible DR and ML methods, and found that even > 10% worse model can be found using popular standard procedures related to the best results. Our workflow calls the attention of careful model selection to gain accurate maps.
ABSTRACT:In our study we classified grassland vegetation types of an alkali landscape (Eastern Hungary), using different image classification methods for hyperspectral data. Our aim was to test the applicability of hyperspectral data in this complex system using various image classification methods. To reach the highest classification accuracy, we compared the performance of traditional image classifiers, machine learning algorithm, feature extraction (MNF-transformation) and various sizes of training dataset. Hyperspectral images were acquired by an AISA EAGLE II hyperspectral sensor of 128 contiguous bands (400-1000 nm), a spectral sampling of 5 nm bandwidth and a ground pixel size of 1 m. We used twenty vegetation classes which were compiled based on the characteristic dominant species, canopy height, and total vegetation cover. Image classification was applied to the original and MNF (minimum noise fraction) transformed dataset using various training sample sizes between 10 and 30 pixels. In the case of the original bands, both SVM and RF classifiers provided high accuracy for almost all classes irrespectively of the number of the training pixels. We found that SVM and RF produced the best accuracy with the first nine MNF transformed bands. Our results suggest that in complex open landscapes, application of SVM can be a feasible solution, as this method provides higher accuracies compared to RF and MLC. SVM was not sensitive for the size of the training samples, which makes it an adequate tool for cases when the available number of training pixels are limited for some classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.