Modification of the hydrophobic binding pocket of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) enables increased activity and selectivity towards phenylalanines and cinnamic acids mono-substituted with both electron donating (-CH 3 ,-OCH 3) and electron withdrawing (-CF 3 ,-Br) groups at all positions (o-, m-, p-) of their aromatic ring. The results reveal specific residues involved in accommodating substituents at o-, m-, p-positions of the substrate's phenyl ring. The predicted interactions were validated by crystallographic analysis of the binding mode of paramethoxy cinnamic acid complexed at the active site of PcPAL. The biocatalytic utility of the tailored PcPAL mutants was demonstrated by the efficient preparative scale synthesis of (S)-m-bromo-phenylalanine (ee: > 99%, yield: 60%
The outer membrane (OM) in Gram-negative bacteria is an asymmetric bilayer with mostly lipopolysaccharide (LPS) molecules in the outer leaflet. During OM biogenesis, new LPS molecules are transported from their site of assembly on the inner membrane to the OM by seven LPS transport proteins (LptA-G). The complex formed between the integral β-barrel OM protein LptD and the lipoprotein LptE is responsible for transporting LPS from the periplasmic side of the OM to its final location on the cell surface. Because of its essential function in many Gram-negative bacteria, the LPS transport pathway is an interesting target for the development of new antibiotics. A family of macrocyclic peptidomimetics was discovered recently that target LptD and inhibit LPS transport specifically in Pseudomonas spp. The related molecule Murepavadin is in clinical development for the treatment of life-threatening infections caused by P. aeruginosa. To characterize the interaction of these antibiotics with LptD from P. aeruginosa, we characterized the binding site by cross-linking to a photolabeling probe. We used a hypothesis-free mass spectrometry-based proteomic approach to provide evidence that the antibiotic cross-links to the periplasmic segment of LptD, containing a β-jellyroll domain and an N-terminal insert domain characteristic of Pseudomonas spp. Binding of the antibiotic to the periplasmic segment is expected to block LPS transport, consistent with the proposed mode of action and observed specificity of these antibiotics. These insights may prove valuable for the discovery of new antibiotics targeting the LPS transport pathway in other Gram-negative bacteria.
Phenylalanine ammonia-lyase (PAL), found in many organisms, catalyzes the deamination of l-phenylalanine (Phe) to (E)-cinnamate by the aid of its MIO prosthetic group. By using PAL immobilized on magnetic nanoparticles and fixed in a microfluidic reactor with an in-line UV detector, we demonstrated that PAL can catalyze ammonia elimination from the acyclic propargylglycine (PG) to yield (E)-pent-2-ene-4-ynoate. This highlights new opportunities to extend MIO enzymes towards acyclic substrates. As PG is acyclic, its deamination cannot involve a Friedel-Crafts-type attack at an aromatic ring. The reversibility of the PAL reaction, demonstrated by the ammonia addition to (E)-pent-2-ene-4-ynoate yielding enantiopure l-PG, contradicts the proposed highly exothermic single-step mechanism. Computations with the QM/MM models of the N-MIO intermediates from L-PG and L-Phe in PAL show similar arrangements within the active site, thus supporting a mechanism via the N-MIO intermediate.
Tailored mutants of phenylalanine ammonia‐lyase from Petroselinum crispum (PcPAL) were created and tested in ammonia elimination from various sterically demanding, non‐natural analogues of phenylalanine and in ammonia addition reactions into the corresponding (E)‐arylacrylates. The wild‐type PcPAL was inert or exhibited quite poor conversions in both reactions with all members of the substrate panel. Appropriate single mutations of residue F137 and the highly conserved residue I460 resulted in PcPAL variants that were active in ammonia elimination but still had a poor activity in ammonia addition onto bulky substrates. However, combined mutations that involve I460 besides the well‐studied F137 led to mutants that exhibited activity in ammonia addition as well. The synergistic multiple mutations resulted in substantial substrate scope extension of PcPAL and opened up new biocatalytic routes for the synthesis of both enantiomers of valuable phenylalanine analogues, such as (4‐methoxyphenyl)‐, (napthalen‐2‐yl)‐, ([1,1′‐biphenyl]‐4‐yl)‐, (4′‐fluoro‐[1,1′‐biphenyl]‐4‐yl)‐, and (5‐phenylthiophene‐2‐yl)alanines.
Biotransformation of L-phenylalanine (L-1a) and five unnatural substrates (rac-1b-f) by phenylalanine ammonia-lyase (PAL) was investigated in a novel microfluidic device (Magne-Chip) that comprises microliter volume reaction cells filled with PAL-coated magnetic nanoparticles (MNPs). Experiments proved the excellent reproducibility of enzymecatalyzed biotransformation in the chip and the excellent reusability of the enzyme layer during 14 h continuous measurement (>98% over 7 repetitive measurements with L-1a). The platform also enabled fully automatic multiparameter measurements with a single biocatalyst loading of about 1 mg PAL-MNP. Computational fluid dynamics (CFD) calculations were used to study the flow field in the chambers and the effect of unintended bubble formation. Optimal flow rate for L-1a reaction and specific activities for rac-1b-f under these conditions were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.