Artificial femoral arterio-venous (AV) shunts are widely used in rodent models for studying shunt maturation and to optimize various surgical techniques. However, little is known about complex circulatory, microcirculatory, and hemorheological effects of end-to-side saphenous AV shunts. We aimed to study these parameters in mature AV shunts. Studying these questions in CD rats, end-to-side anastomoses were made between the left saphenous artery and vein. On the right-side the nonoperated saphenous vessels served as own control. Furthermore healthy control animals were also investigated. On the 8th to 12th postoperative week microcirculatory and blood flow measurements were performed and blood samples were taken both from the shunt's arterial and venous limbs and from the nonoperated side vessels. Hematological parameters, erythrocyte aggregation, and deformability were determined. The entire shunt and the control vessels were removed for histological examinations. The skin microcirculation on shunt side slightly increased on thigh and decreased on paws versus the nonoperated side. Blood flow measurements made directly on the vessels showed that arterial to venous blood flow rate ratio was 1.59 ± 0.29 on nonoperated side and 1.2 ± 0.13 on the shunt side, and 1.49 ± 0.05 in control animals. Erythrocyte aggregation and deformability worsened on the shunt side. Histologically increased number of smooth muscle elements and connective tissue were found in venous limb of the shunts. The artificial AV shunt between the saphenous artery and vein seems to be a suitable model for further functional-morphological and hemorheological examinations of hemodialysis in various states and diseases.
Cicletanine exerts beneficial cardiac effects in rabbits with symptoms of MS, which may be of influence with regard to the clinical application of the drug.
Patients with perturbed metabolic control are more prone to develop cardiac rhythm disturbances. The main purpose of the present preclinical study was to investigate the possible role of euglycemic hyperinsulinemia in development of cardiac arrhythmias. Euglycemic hyperinsulinemia was induced in conscious rabbits equipped with a right ventricular pacemaker electrode catheter by hyperinsulinemic euglycemic glucose clamp (HEGC) applying two different rates of insulin infusion (5 and 10 mIU/kg/min) and variable rate of glucose infusion to maintain euglycemia (5.5 ± 0.5 mmol/l). The effect of hyperinsulinemia on cardiac electrophysiological parameters was continuously monitored by means of 12-lead surface ECG recording. Arrhythmia incidence was determined by means of programmed electrical stimulation (PES). The possible role of adrenergic activation was investigated by determination of plasma catecholamine levels and intravenous administration of a beta adrenergic blocking agent, metoprolol. All of the measurements were performed during the steady-state period of HEGC and subsequent to metoprolol administration. Both 5 and 10 mIU/kg/min insulin infusion prolonged significantly QTend, QTc, and Tpeak-Tend intervals. The incidence of ventricular arrhythmias generated by PES was increased significantly by euglycemic hyperinsulinemia and exhibited linear relationship to plasma levels of insulin. No alteration on plasma catecholamine levels could be observed; however, metoprolol treatment restored the prolonged QTend, QTc, and Tpeak-Tend intervals and significantly reduced the hyperinsulinemia-induced increase of arrhythmia incidence. Euglycemic hyperinsulinemia can exert proarrhythmic effect presumably due to the enhancement of transmural dispersion of repolarization. Metoprolol treatment may be of benefit in hyperinsulinemia associated with increased incidence of cardiac arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.