Abstract:There is currently a need for an efficient numerical optimization strategy for the quality of friction stir welded (FSW) joints. However, due to the computational complexity of the multi-physics problem, process parameter optimization has been a goal that is out of reach of the current state-of-the-art simulation codes. In this work, we describe an advanced meshfree computational framework that can be used to determine numerically optimized process parameters while minimizing defects in the friction stir weld zone. The simulation code, SPHriction-3D, uses an innovative parallelization strategy on the graphics processing unit (GPU). This approach allows determination of optimal parameters faster than is possible with costly laboratory testing. The meshfree strategy is firstly outlined. Then, a novel metric is proposed that automatically evaluates the presence and severity of defects in the weld zone. Next, the code is validated against a set of experimental results for 1 /2" AA6061-T6 butt joint FSW joints. Finally, the code is used to determine the optimal advancing speed and rpm while minimizing defect volume based on the proposed defect metric.
The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.