BackgroundMycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.ResultsHere we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.ConclusionsThe data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.
T he genus Armillaria causes root rot disease in both gymnoand angiosperms, in forests, parks, and even vineyards in more than 500 host plant species 1 across the world. Most Armillaria species are facultative necrotrophs, which, after colonizing and killing the root cambium, transition to a saprobic phase, decomposing dead woody tissues of the host. As saprotrophs, Armillaria spp. are white rot (WR) fungi, which can efficiently decompose all components of plant cell walls, including lignin, (hemi-)cellulose and pectin 2 . They produce fleshy fruiting bodies (honey mushrooms) that appear in large clumps around infected plants and produce sexual spores. The vegetative phase of Armillaria is predominantly diploid rather than dikaryotic like most basidiomycetes.Individuals of Armillaria can reach immense sizes and include the 'humongous fungus' , one of the largest terrestrial organisms on Earth 3 , measuring up to 965 hectares and 600 tons 4 , and can display a mutation rate ≅ 3 orders of magnitude lower than most filamentous fungi 5 . Individuals reach this immense size via growing rhizomorphs, dark mycelial strings 1-4 mm wide that allow the fungus to bridge gaps between food sources or host plants 1,6 (hence the name shoestring root rot). Rhizomorphs develop through the aggregation and coordinated parallel growth of hyphae, similar to some fruiting body tissues 7,8 . As migratory and exploratory organs, rhizomorphs can grow approximately 1 m yr −1 and cross several metres underground in search for new hosts, although roles in uptake and longrange translocation of nutrients have also been proposed 1,9,10 . Root contact by rhizomorphs is the main mode of infection by the fungus, which makes the prevention of recurrent infection in Armillariacontaminated areas particularly difficult 1 . Despite their huge impact on forestry, horticulture and agriculture, the genetics of the pathogenicity of Armillaria species is poorly understood. The only -omics data published so far have highlighted a substantial repertoire of plant cell wall degrading enzymes (PCWDE) and secreted proteins, among others, in A. mellea and A. solidipes 11,12 , while analyses of the genomes of other pathogenic basidiomycetes (such as Moniliophthora 13,14 , Heterobasidion 15 and Rhizoctonia 16 ) identified genes coding for PCWDEs, secreted and effector proteins or secondary metabolism (SM) as putative pathogenicity factors. However, the lifecycle and unique dispersal strategy of Armillaria prefigure other evolutionary routes to pathogenicity, which, along with other potential genomic factors (such as transposable elements 17 ) are not yet known.Here, we investigate genome evolution and the origin of pathogenicity in Armillaria using comparative genomics, transcriptomics
The worldwide commercial production of the oyster mushroom Pleurotus ostreatus is currently threatened by massive attacks of green mold disease. Using an integrated approach to species recognition comprising analyses of morphological and physiological characters and application of the genealogical concordance of multiple phylogenetic markers (internal transcribed spacer 1 [ITS1] and ITS2 sequences; partial sequences of tef1 and chi18-5), we determined that the causal agents of this disease were two genetically closely related, but phenotypically strongly different, species of Trichoderma, which have been recently described as Trichoderma pleurotum and Trichoderma pleuroticola. They belong to the Harzianum clade of Hypocrea/Trichoderma which also includes Trichoderma aggressivum, the causative agent of green mold disease of Agaricus. Both species have been found on cultivated Pleurotus and its substratum in Europe, Iran, and South Korea, but T. pleuroticola has also been isolated from soil and wood in Canada, the United States, Europe, Iran, and New Zealand. T. pleuroticola displays pachybasium-like morphological characteristics typical of its neighbors in the Harzianum clade, whereas T. pleurotum is characterized by a gliocladium-like conidiophore morphology which is uncharacteristic of the Harzianum clade. Phenotype MicroArrays revealed the generally impaired growth of T. pleurotum on numerous carbon sources readily assimilated by T. pleuroticola and T. aggressivum. In contrast, the Phenotype MicroArray profile of T. pleuroticola is very similar to that of T. aggressivum, which is suggestive of a close genetic relationship. In vitro confrontation reactions with Agaricus bisporus revealed that the antagonistic potential of the two new species against this mushroom is perhaps equal to T. aggressivum. The P. ostreatus confrontation assays showed that T. pleuroticola has the highest affinity to overgrow mushroom mycelium among the green mold species. We conclude that the evolutionary pathway of T. pleuroticola could be in parallel to other saprotrophic and mycoparasitic species from the Harzianum clade and that this species poses the highest infection risk for mushroom farms, whereas T. pleurotum could be specialized for an ecological niche connected to components of Pleurotus substrata in cultivation. A DNA BarCode for identification of these species based on ITS1 and ITS2 sequences has been provided and integrated in the main database for Hypocrea/Trichoderma (www.ISTH.info).
Fungal keratitis is a serious suppurative, usually ulcerative corneal infection which may result in blindness or reduced vision. Epidemiological studies indicate that the occurrence of fungal keratitis is higher in warm, humid regions with agricultural economy. The most frequent filamentous fungal genera among the causal agents are Fusarium, Aspergillus and Curvularia. A more successful therapy of fungal keratitis relies on precise identification of the pathogen to the species level using molecular tools. As the sequence analysis of the internal transcribed spacer (ITS) region of the ribosomal RNA gene cluster (rDNA) is not discriminative enough to reveal a species-level diagnosis for several filamentous fungal species highly relevant in keratitis infections, analysis of other loci is also required for an exact diagnosis. Molecular identifications may also reveal the involvement of fungal species which were not previously reported from corneal infections. The routinely applied chemotherapy of fungal keratitis is based on the topical and systemic administration of polyenes and azole compounds. Antifungal susceptibility testing of the causal agents is of special importance due to the emergence and spread of resistance. Testing the applicability of further available antifungals and screening for new, potential compounds for the therapy of fungal keratitis are of highlighted interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.