In Aspergillus nidulans, uptake rather than hydrolysis is the rate-limiting step of lactose catabolism. Deletion of the lactose permease A-encoding gene (lacpA) reduces the growth rate on lactose, while its overexpression enables faster growth than wild-type strains are capable of. We have identified a second physiologically relevant lactose transporter, LacpB. Glycerol-grown mycelia from mutants deleted for lacpB appear to take up only minute amounts of lactose during the first 60 h after a medium transfer, while mycelia of double lacpA/lacpB-deletant strains are unable to produce new biomass from lactose. Although transcription of both lacp genes was strongly induced by lactose, their inducer profiles differ markedly. lacpA but not lacpB expression was high in D-galactose cultures. However, lacpB responded strongly also to b-linked glucopyranose dimers cellobiose and sophorose, while these inducers of the cellulolytic system did not provoke any lacpA response. Nevertheless, lacpB transcript was induced to higher levels on cellobiose in strains that lack the lacpA gene than in a wild-type background. Indeed, cellobiose uptake was faster and biomass formation accelerated in lacpA deletants. In contrast, in lacpB knockout strains, growth rate and cellobiose uptake were considerably reduced relative to wild-type, indicating that the cellulose and lactose catabolic systems employ common elements. Nevertheless, our permease mutants still grew on cellobiose, which suggests that its uptake in A. nidulans prominently involves hitherto unknown transport systems.
L-Arabinose and D-galactose are the principal constituents of L-arabinogalactan, and also cooccur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while L-arabinose is utilised faster in the presence than in the absence of D-galactose. Furthermore, the first two genes of the Leloir pathway for D-galactose catabolismencoding D-galactose 1-epimerase and galactokinaseare induced more rapidly by L-arabinose than by D-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. D-Galactose 1-epimerase is hyperinduced by L-arabinose, Dxylose and L-arabitol but not by xylitol. The results suggest that in A. nidulans, L-arabinose and D-xyloseboth requiring NADPH for their catabolisationactively promote the enzyme infrastructure necessary to convert -D-galactopyranose via the Leloir pathway with its anomer specific enzymes, into -D-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of D-galactose.
Aldose 1-epimerases or mutarotases (EC 5.1.3.3) are catalyzing the interconversion of α- and β-anomers of hemiacetals of aldose sugars such as D-glucose and D-galactose, and are presumed to play an auxiliary role in carbohydrate metabolism as mutarotation occurs spontaneously in watery solutions. The first step in the Leloir pathway of D-galactose breakdown is preceded by accelerated conversion of β-D-galactopyranose into the α-anomer, the substrate of the anomer-specific D-galactose 1-kinase. Here, we identified two putative aldose-1-epimerase genes (galmA and galmB) in the model organism Aspergillus nidulans, and characterized them upon generation of single- and double deletion mutant strains, as well as overexpressing mutants carrying multiple copies of either. Assaying cell-free extracts from the galmB single- and galm double mutants, we observed that the mutarotation hardly exceeded spontaneous anomer conversion, while galmB multicopy strains displayed higher activities than the wild type, increasing with the copy number. When grown on D-galactose in submerged cultures, biomass formation and D-galactose uptake rates in mutants lacking galmB were considerably reduced. None such effects were observed studying galmA deletion mutants, which consistently behave like the wild type. We conclude that GalmB is the physiologically relevant mutarotase for the utilization of D-galactose in A. nidulans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.