We present a Penicillium rubens strain with an industrial background in which the four highly expressed biosynthetic gene clusters (BGC) required to produce penicillin, roquefortine, chrysogine and fungisporin were removed. This resulted in a minimal secondary metabolite background. Amino acid pools under steady-state growth conditions showed reduced levels of methionine and increased intracellular aromatic amino acids. Expression profiling of remaining BGC core genes and untargeted mass spectrometry did not identify products from uncharacterized BGCs. This platform strain was repurposed for expression of the recently identified polyketide calbistrin gene cluster and achieved high yields of decumbenone A, B and C. The penicillin BGC could be restored through in vivo assembly with eight DNA segments with short overlaps. Our study paves the way for fast combinatorial assembly and expression of biosynthetic pathways in a fungal strain with low endogenous secondary metabolite burden.
Filamentous fungi are highly productive cell factories, often used in industry for the production of enzymes and small bioactive compounds. Recent years have seen an increasing number of synthetic-biology-based applications in fungi, emphasizing the need for a synthetic biology toolkit for these organisms. Here we present a collection of 96 genetic parts, characterized in Penicillium or Aspergillus species, that are compatible and interchangeable with the Modular Cloning system. The toolkit contains natural and synthetic promoters (constitutive and inducible), terminators, fluorescent reporters, and selection markers. Furthermore, there are regulatory and DNA-binding domains of transcriptional regulators and components for implementing different CRISPR-based technologies. Genetic parts can be assembled into complex multipartite assemblies and delivered through genomic integration or expressed from an AMA1-sequence-based, fungal-replicating shuttle vector. With this toolkit, synthetic transcription units with established promoters, fusion proteins, or synthetic transcriptional regulation devices can be more rapidly assembled in a standardized and modular manner for novel fungal cell factories.
Background: Orthogonal, synthetic control devices were developed for Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. In the synthetic transcription factor, the QF DNA-binding domain of the transcription factor of the quinic acid gene cluster of Neurospora crassa is fused to the VP16 activation domain. This synthetic transcription factor controls the expression of genes under a synthetic promoter containing quinic acid upstream activating sequence (QUAS) elements, where it binds. A gene cluster may demand an expression tuned individually for each gene, which is a great advantage provided by this system. Results: The control devices were characterized with respect to three of their main components: expression of the synthetic transcription factors, upstream activating sequences, and the affinity of the DNA binding domain of the transcription factor to the upstream activating domain. This resulted in synthetic expression devices, with an expression ranging from hardly detectable to a level similar to that of highest expressed native genes. The versatility of the control device was demonstrated by fluorescent reporters and its application was confirmed by synthetically controlling the production of penicillin. Conclusions: The characterization of the control devices in microbioreactors, proved to give excellent indications for how the devices function in production strains and conditions. We anticipate that these well-characterized and robustly performing control devices can be widely applied for the production of secondary metabolites and other compounds in filamentous fungi.
Filamentous fungi are historically known to be a rich reservoir of bioactive compounds that are applied in a myriad of fields ranging from crop protection to medicine. The surge of genomic data available shows that fungi remain an excellent source for new pharmaceuticals. However, most of the responsible biosynthetic gene clusters are transcriptionally silent under laboratory growth conditions. Therefore, generic strategies for activation of these clusters are required. Here, we present a genome-editing-free, transcriptional regulation tool for filamentous fungi, based on the CRISPR activation (CRISPRa) methodology. Herein, a nuclease-defective mutant of Cas9 (dCas9) was fused to a highly active tripartite activator VP64-p65-Rta (VPR) to allow for sgRNA directed targeted gene regulation. dCas9-VPR was introduced, together with an easy to use sgRNA “plug-and-play” module, into a non-integrative AMA1-vector, which is compatible with several filamentous fungal species. To demonstrate its potential, this vector was used to transcriptionally activate a fluorescent reporter gene under the control of the penDE core promoter in Penicillium rubens. Subsequently, we activated the transcriptionally silent, native P. rubens macrophorin biosynthetic gene cluster by targeting dCas9-VPR to the promoter region of the transcription factor macR. This resulted in the production of antimicrobial macrophorins. This CRISPRa technology can be used for the rapid and convenient activation of silent fungal biosynthetic gene clusters, and thereby aid in the identification of novel compounds such as antimicrobials.
Several CRISPR/Cas9 tools have been recently established for precise genome editing in a wide range of filamentous fungi. This genome editing platform offers high flexibility in target selection and the possibility of introducing genetic deletions without the introduction of transgenic sequences . This chapter describes an approach for the transformation of Penicillium chrysogenum protoplasts with preassembled ribonucleoprotein particles (RNPs) consisting of purified Cas9 protein and in vitro transcribed single guide RNA (sgRNA) for the deletion of genome sequences or their replacement with alternative sequences. This method is potentially transferable to all fungal strains where protoplasts can be obtained from.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.