SummaryGlycinebetaine is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants when these plants are exposed to salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into glycinebetaine, has previously been cloned from a soil bacterium, Arthrobacter globiformis. Transformation of Arabidopsis thaliana with the cloned codA gene under the control of the 35S promoter of cauliflower mosaic virus enabled the plant to accumulate glycinebetaine and enhanced its tolerance to salt and cold stress. At 300 mM NaCl, considerable proportions of seeds of transformed plants germinated well, whereas seeds of wild-type plants failed to germinate. At 100 mM NaCI, transformed plants grew well whereas wild-type plants did not do so. The transformed plants tolerated 200 mM NaCI, which was lethal to wild-type plants. After plants had been incubated with 400 mM NaCI for two days, the photosystem II activity of wild-type plants had almost completely disappeared, whereas that of transformed plants remained at more than 50% of the original level. When exposed to a low temperature in the light, leaves of wild-type plants exhibited symptoms of chlorosis, whereas those of transformed plants did not. These observations demonstrate that the genetic modification of Arabidopsis thaliana that allowed it to accumulate glycinebetaine enhanced its ability to tolerate salt and cold stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.