The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
The genetic integrity and evolutionary persistence of declining wildcat populations are threatened by crossbreeding with widespread free-living domestic cats. Here we use allelic variation at 12 microsatellite loci to describe genetic variation in 336 cats sampled from nine European countries. Cats were identified as European wildcats (Felis silvestris silvestris), Sardinian wildcats (F. s. libyca) and domestic cats (F. s. catus), according to phenotypic traits, geographical locations and independently of any genetic information. Genetic variability was significantly partitioned among taxonomic groups (FST = 0.11; RST = 0.41; P < 0.001) and sampling locations (FST = 0.07; RST = 0.06; P < 0.001), suggesting that wild and domestic cats are subdivided into distinct gene pools in Europe. Multivariate and Bayesian clustering of individual genotypes also showed evidence of distinct cat groups, congruent with current taxonomy, and suggesting geographical population structuring. Admixture analyses identified cryptic hybrids among wildcats in Portugal, Italy and Bulgaria, and evidenced instances of extensive hybridization between wild and domestic cats sampled in Hungary. Cats in Hungary include a composite assemblage of variable phenotypes and genotypes, which, as previously documented in Scotland, might originate from long lasting hybridization and introgression. A number of historical, demographic and ecological conditions can lead to extensive crossbreeding between wild and domestic cats, thus threatening the genetic integrity of wildcat populations in Europe.
Methods recently developed to infer population structure and admixture mostly use individual genotypes described by unlinked neutral markers. However, Hardy-Weinberg and linkage disequilibria among independent markers decline rapidly with admixture time, and the admixture signals could be lost in a few generations. In this study, we aimed to describe genetic admixture in 182 European wild and domestic cats (Felis silvestris), which hybridize sporadically in Italy and extensively in Hungary. Cats were genotyped at 27 microsatellites, including 21 linked loci mapping on five distinct feline linkage groups. Genotypes were analysed with structure 2.1, a Bayesian procedure designed to model admixture linkage disequilibrium, which promises to assess efficiently older admixture events using tightly linked markers. Results showed that domestic and wild cats sampled in Italy were split into two distinct clusters with average proportions of membership Q > 0.90, congruent with prior morphological identifications. In contrast, free-living cats sampled in Hungary were assigned partly to the domestic and the wild cat clusters, with Q < 0.50. Admixture analyses of individual genotypes identified, respectively, 5/61 (8%), and 16-20/65 (25-31%) hybrids among the Italian wildcats and Hungarian free-living cats. Similar results were obtained in the past using unlinked loci, although the new linked markers identified additional admixed wildcats in Italy. Linkage analyses confirm that hybridization is limited in Italian, but widespread in Hungarian wildcats, a population that is threatened by cross-breeding with free-ranging domestic cats. The total panel of 27 loci performed better than the linked loci alone in the identification of domestic and known hybrid cats, suggesting that a large number of linked plus unlinked markers can improve the results of admixture analyses. Inferred recombination events led to identify the population of origin of chromosomal segments, suggesting that admixture mapping experiments can be designed also in wild populations.
The feeding habits of feral domestic cats Felis catus (n=264), wild cats Felis silvestris (n=22) and their hybrids (n=30) were investigated in Hungary. Cat groups were identified taxonomically by morphological and molecular methods. Diet components were identified in stomach contents and faeces collected from the recta. In each cat group, abundant small mammals were dominant in the diet (relative frequency of occurrence: feral domestic cat, 61–82%, depending on regions; wild cat, 70%; hybrid, 59%). Birds were the second most important quarry (2–7%, 16% and 20%, respectively in the three cat groups), while the contribution of hares (1–2%, 5% and 3%, respectively) and other taxa was not significant. Every cat group preyed on small‐sized animals (<50 g; 89–96%, 80% and 80%, respectively), terrestrial (91–98%, 84% and 86%, respectively) and wild (71–73%, 87% and 77%, respectively) prey. Standardized trophic niche breadth was typically very narrow (BA=0.07–0.16, 0.13 and 0.17, respectively). Feral domestic cats occasionally consumed household food (2–7%) and domestic animals (4–8%). This could mean that feral domestic cats have an advantage over wild cats that are food specialists. The trophic niche overlap between cat groups was high (77–88%). Food composition and feeding habits, (weight, zonation and environmental association of consumed prey) of feral domestic cats, however, was different compared to wild cats, which indicated the possibility of partial resource partitioning. The values for hybrids were between the two groups. As well as the stable presence of feral domestic cats (mean population density, D=1.34 individuals/1000 ha) based on field live‐trapping, hybrids are also present (D=0.10), leading to continuous hybridization. This can threaten the population of wild cats, which are present at a low density (D=0.17).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.