We present a new initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals which are essential for determining high-resolution 3-D structures of proteins. MIPs, also referred to as ‘smart materials’ are made to contain cavities capable of rebinding protein, thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8- 10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size-compatibility being a likely criterion for efficacy. Atomic Force Microscopy (AFM) measurements demonstrated specific affinity between the MIPs cavities and a protein-functionalised AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation inducing substrates (nucleants) by harnessing the proteins themselves as templates
We report on the first use of carbon-nanotube based films to produce crystals of proteins. The crystals nucleate on the surface of the film. The difficulty of crystallising proteins is a major bottleneck in the determination of the structure and function of biological molecules. The crystallisation of two model proteins and two medically relevant proteins was studied. Quantitative data on the crystallisation times of the model protein lysozyme are also presented. Two types of the nanotube film, one made with the surfactant Triton X-100 (TX-100) and one with gelatin, were tested. Both induce nucleation of the crystal phase at supersaturations at which the protein solution would otherwise remain clear, however the gelatin-based film induced nucleation down to much lower supersaturations for the two model proteins with which it was used. It appears that the interactions of gelatin with the protein molecules are particularly favourable to nucleation. Crystals of the C1 domain of the human cardiac myosin-binding protein-C that diffracted to a resolution of 1.6Å, were obtained on the TX-100 film. This is far superior to the best crystals obtained using standard techniques, which only diffracted to 3.0 Å. Thus, both our nanotube-based films are very promising candidates for future work on crystallising difficult-tocrystallise target proteins.3
Solving the structure of proteins is pivotal to achieving success in rational drug design and in other biotechnological endeavors. The most powerful method for determining the structure of proteins is X-ray crystallography, which relies on the availability of high-quality crystals. However, obtaining such crystals is a major hurdle. Nucleation is the crucial prerequisite step, which requires overcoming an energy barrier. The presence in a protein solution of a nucleant, a solid or a semiliquid substance that facilitates overcoming that barrier allows crystals to grow under ideal conditions, paving the way for the formation of high-quality crystals. The use of nucleants provides a unique means for optimizing the diffraction quality of crystals, as well as for discovering new crystallization conditions. We present a protocol for controlling the nucleation of protein crystals that is applicable to a wide variety of nucleation-inducing substances. Setting up crystallization trials using these nucleating agents takes an additional few seconds compared with conventional setup, and it can accelerate crystallization, which typically takes several days to months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.