The present work is an attempt to study the effect of different surface treatments of flax fiber on the mechanical properties of the natural fiber reinforced natural rubber (NR) composites. In this study, flax fiber was chopped to 1, 1.25, and 1.5 cm in length and mixed with NR in two roll mill. The composite of 20%, 30%, 40%, and 50% fiber loading was prepared from each fiber length. Tensile analysis showed that a 1.25 cm fiber length composite of volume 40% has higher tensile strength compared to others.Hence, this optimized the fiber length and loading has opted for further study. Flax fiber was treated with NaOH and laccase and reinforced into an NR matrix. Properties like tensile strength, hardness, relative density, water diffusion, scanning electron microscope (SEM) and Fouriertransform infrared spectroscopy (FTIR) for surface treated and untreated natural fiber-reinforced NR composites have been investigated and compared. The reduction in the hydrophilic characteristics of the NaOH and laccase treated fiber was evident from FTIR analysis and increase in the crystallinity index of the fiber depicted by X-ray diffraction (XRD) results. SEM analysis showed the enhanced interfacial interaction of treated flax fiber NR composite compared to untreated composite due to the removal of non-cellulosic contents in fiber and an increase in the surface roughness after treatments. Further, an increase of 9% and 27.4% in tensile and tear strength was found in NaOH treated flax fiber reinforced NR composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.