The current study examined the effect of obesity on the development of renal injury within the genetic background of the Dahl salt-sensitive rat with a dysfunctional leptin receptor derived from zinc-finger nucleases (SSmutant strain). At 6 wk of age, body weight was 35% higher in the SSmutant strain compared with SS rats and remained elevated throughout the entire study. The SSmutant strain exhibited impaired glucose tolerance and increased plasma insulin levels at 6 wk of age, suggesting insulin resistance while SS rats did not. However, blood glucose levels were normal throughout the course of the study. Systolic arterial pressure (SAP) was similar between the two strains from 6 to 10 wk of age. However, by 18 wk of age, the development of hypertension was more severe in the SSmutant strain compared with SS rats (201 ± 10 vs. 155 ± 3 mmHg, respectively). Interestingly, proteinuria was substantially higher at 6 wk of age in the SSmutant strain vs. SS rats (241 ± 27 vs. 24 ± 2 mg/day, respectively) and remained elevated until the end of the study. The kidneys from the SSmutant strain displayed significant glomerular injury, including podocyte foot process effacement and lipid droplets compared with SS rats as early as 6 wk of age. By 18 wk of age, plasma creatinine levels were twofold higher in the SSmutant strain vs. SS rats, suggesting the presence of chronic kidney disease (CKD). Overall, these results indicate that the SSmutant strain develops podocyte injury and proteinuria independently of hyperglycemia and elevated arterial pressure that later progresses to CKD.
The present study examined whether development of renal injury in the nondiabetic obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) strain is associated with elevations in glomerular filtration rate and renal lipid accumulation. Baseline mean arterial pressure at 6 wk of age was similar between Dahl salt-sensitive wild-type (SSWT) and SSLepRmutant rats. However, by 18 wk of age, the SSLepRmutant strain developed hypertension, while the elevation in mean arterial pressure was not as severe in SSWT rats (192 ± 4 and 149 ± 6 mmHg, respectively). At baseline, proteinuria was fourfold higher in SSLepRmutant than SSWT rats and remained elevated throughout the study. The early development of progressive proteinuria was associated with renal hyperfiltration followed by a decline in renal function over the course of study in the SSLepRmutant compared with SSWT rats. Kidneys from the SSLepRmutant strain displayed more glomerulosclerosis and glomerular lipid accumulation than SSWT rats. Glomeruli were isolated from the renal cortex of both strains at 6 and 18 wk of age, and RNA sequencing was performed to identify genes and pathways driving glomerular injury. We observed significant increases in expression of the influx lipid transporters, chemokine (C-X-C motif) ligand 16 (Cxcl16) and scavenger receptor and fatty acid translocase (Cd36), respectively, and a significant decrease in expression of the efflux lipid transporter, ATP-binding cassette subfamily A member 2 ( Abca2; cholesterol efflux regulatory protein 2), in SSLepRmutant compared with SSWT rats at 6 and 18 wk of age, which were validated by RT-PCR analysis. These data suggest an association between glomerular hyperfiltration and glomerular lipid accumulation during the early development of proteinuria associated with obesity.
The endothelin (ET) system has emerged as a therapeutic target for the treatment of diabetic nephropathy (DN). The present study examined whether chronic endothelin A (ET) receptor blockade with atrasentan prevents the progression of renal injury in two models of DN with preexisting renal disease that exhibit an increased renal ET-1 system compared with nondiabetic rats: streptozotocin-treated Dahl salt-sensitive (STZ-SS) and type 2 diabetic nephropathy (T2DN) rats. Nine week-old SS rats were treated with (STZ; 50 mg/kg ip) to induce diabetes. After 3 wk of diabetes, proteinuria increased to 353 ± 34 mg/day. The rats were then separated into two groups: 1) vehicle and 2) atrasentan (5 mg·kg·day) via drinking water. After 6 wk of treatment with atrasentan, mean arterial pressure (MAP) and proteinuria decreased by 12 and 40%, respectively, in STZ-SS rats. The degree of glomerulosclerosis and renal fibrosis was significantly reduced in the kidneys of atrasentan-treated STZ-SS rats compared with vehicle STZ-SS rats. Interestingly, treatment with atrasentan did not affect GFR but significantly increased renal blood flow by 33% and prevented the elevations in filtration fraction and renal vascular resistance by 23 and 20%, respectively, in STZ-SS rats. In contrast to the STZ-SS study, atrasentan had no effect on MAP or proteinuria in T2DN rats. However, treatment with atrasentan significantly decreased glomerular injury and renal fibrosis and prevented the decline in renal function in T2DN rats. These data indicate that chronic ET blockade produces advantageous changes in renal hemodynamics that slow the progression of renal disease and also reduces renal histopathology in the absence of reducing arterial pressure and proteinuria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.