Efficient room-temperature luminescence at optical telecommunication wavelengths and originating from direct band-to-band recombination has been observed in tensile-strained germanium nanocrystals synthesized by mechanical grinding techniques. Selected area electron diffraction, micro-Raman and optical-absorption spectroscopy measurements indicate high tensile-strains while combined photoluminescence spectroscopy, excitation-power evolution and time-resolved measurements suggest direct band-to-band recombination. Such band-engineered germanium nanocrystals offer great possibilities for silicon-photonics integration due to their superb light-emission properties, facile fabrication and compatibility with standard microelectronic processes.
An experimental study is performed to investigate the electro-mechanical response of three-dimensionally conductive multi-functional glass fiber/epoxy laminated composites under quasi-static tensile loading. To generate a threedimensional conductive network within the composites, multi-wall carbon nanotubes are embedded within the epoxy matrix and carbon fibers are reinforced between the glass fiber laminates using an electro-flocking technique. A combination of shear mixing and ultrasonication is employed to disperse carbon nanotubes inside the epoxy matrix. A vacuum infusion process is used to fabricate the laminated composites of two different carbon fiber lengths (150 mm and 350 mm) and four different carbon fiber densities (500, 1000, 1500, 2000 fibers/mm 2). A four circumferential probe technique is employed to measure the in-situ electrical resistance of composites under tensile load. Although composites of both carbon fiber lengths showed significant decrease of sheet resistance under no mechanical load conditions, composites of 350 mm long carbon fibers showed the lowest resistivity of 10 X/sq. Unlike the resistance values, composites of 350 mm carbon fibers showed a significant decrease in Young's modulus compared to 150 mm counterparts. For the electro-mechanical response, composites containing carbon fibers of 150 mm long demonstrated a maximum value of percentage change in resistance. These results were then compared to both 350 mm and no added carbon fibers under quasi-static tensile loading.
Multifunctional fiber-reinforced composites play a significant role in advanced aerospace and military applications due to their high strength and toughness resulting in superior damage tolerance. However, early detection of structural changes prior to visible damage is critical for extending the lifetime of the part. MXenes, an emerging class of two-dimensional (2D) nanomaterials, possess hydrophilic surfaces, high electrical conductivity and mechanical properties that can potentially be used to identify damage within fiber-reinforced composites. In this work, conductive Ti3C2Tx MXene flakes were successfully transferred onto insulating glass fibers via oxygen plasma treatment improving adhesion. Increasing plasma treatment power, time and coating layers lead to a decrease in electrical resistance of MXene-coated fibers. Optimized uniformity was achieved using an alternating coating approach with smaller flakes helping initiate and facilitate adhesion of larger flakes. Tensile testing with in-situ electrical resistance tracking showed resistances as low as 1.8 kΩ for small-large flake-coated fiber bundles before the break. Increased resistance was observed during testing, but due to good adhesion between the fiber and MXene, most connective pathways within fiber bundles remained intact until fiber bundles were completely separated. These results demonstrate a potential use of MXene-coated glass fibers in damage-sensing polymer-matrix composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.