Free radicals and other oxidants have gained importance in the field of biology due to their central role in various physiological conditions as well as their implication in a diverse range of diseases. The free radicals, both the reactive oxygen species (ROS) and reactive nitrogen species (RNS), are derived from both endogenous sources (mitochondria, peroxisomes, endoplasmic reticulum, phagocytic cells etc.) and exogenous sources (pollution, alcohol, tobacco smoke, heavy metals, transition metals,
P-glycoprotein (P-gp) is a drug transporter that effluxes chemotherapeutic drugs and is implicated in the development of resistance of cancer cells to chemotherapeutic drugs. To date, no drug has been approved to inhibit P-gp and restore chemotherapy efficacy. Moreover, majority of the reported inhibitors have high molecular weight and complex structures, making it difficult to understand the basic structural requirement for P-gp inhibition. In this study, two structurally simple, low molecular weight piperine analogs Pip1 and Pip2 were designed and found to better interact with P-gp than piperine in silico. A one step, acid-amine coupling reaction between piperic acid and 6,7-dimethoxytetrahydroisoquinoline or 2-(3,4-dimethoxyphenyl)ethylamine afforded Pip1 and Pip2, respectively. In vitro testing in drug resistant P-gp overexpressing KB (cervical) and SW480 (colon) cancer cells showed that both analogs, when co-administered with vincristine, colchicine or paclitaxel were able to reverse the resistance. Moreover, accumulation of P-gp substrate (rhodamine 123) in the resistant cells, a result of alteration of the P-gp efflux, was also observed. These investigations suggest that the natural product analog – Pip1 ((2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1 H)-yl)penta-2,4-dien-1-one) – is superior to piperine and could inhibit P-gp function. Further studies are required to explore the full potential of Pip1 in treating drug resistant cancer.
Heteroatom-doped carbon dots (C-dots) have captured widespread research interest owing to high fluorescence and biocompatibility for multimodal bioimaging applications. Here, we exemplify a rapid, facile synthesis of ethylenediamine (EDA)-functionalized transition metal ion (Mn2+, Fe2+, Co2+, and Ni2+)-doped C-dots via one-pot microwave (MW)-assisted pyrolysis at 800 W within 6 min using Citrus limon (lemon) extract as a carbon source. During MW pyrolysis, the precursor extract undergoes simultaneous carbonization and doping of metal ions onto C-dot surfaces in the presence of EDA. The EDA-functionalized transition metal ion-doped C-dots (i.e., Mn/C, Fe/C, Co/C, and Ni/C-dots) are collectively termed as TMCDs. The water-soluble TMCDs exhibited a size of 3.2 ± 0.485 nm and were enriched with amino and oxo functionalities and corresponding metal-oxide traces on the surfaces, as revealed from Fourier transfer infrared and X-ray photoelectron spectroscopy analyses. Interestingly, TMCDs demonstrated excitation-wavelength-dependent emission with brighter photoluminescence (PL) at 460 nm. Compared to pristine C-dots with a PL quantum yield (QY) of 48.31% and a fluorescence lifetime of 3.6 ns, the synthesized Mn/C, Fe/C, Co/C, and Ni/C-dots exhibited PL QY values of 35.71, 41.72, 75.07, and 50.84% as well as enhanced fluorescence lifetimes (τav) of 9.4, 8.6, 9.2, and 8.9 ns, respectively. The TMCDs significantly exhibited enhanced biocompatibility in human colon cancer cells (SW480) for fluorescence bioimaging and showed ferromagnetic and superparamagnetic behavior with vibrant T 1-contrast ability. Interestingly, the maximum longitudinal (r 1) relaxivity of 0.341 mM–1 s–1 was observed for Mn/C-dots in comparison to that of 3.1–3.5 mM–1 s–1 of clinically used Gd-DTPA magnetic resonance (MR)-contrast agent in vitro (1.5 T). Similarly, the maximum longitudinal relaxivity (r 1) of 0.356 mM–1 s–1 was observed for Ni/C-dots (1.5 T) with respect to 4.16 ± 0.02 mM–1 s–1 attained for Gd-DTPA in vivo (8.45 T). Thus, the rapid, energy-efficient MW-assisted pyrolysis presents lemon extract derived, EDA-functionalized TMCDs with enhanced PL and efficient T 1 contrast as potential magneto-fluorescent nanoprobes for dual-modality bioimaging applications.
Owing to their multiple mechanisms of bactericidal activity, inorganic metal oxides and hybrid metal oxide nanocomposites may serve as a new class of effective disinfectants. Among metal oxide nanoparticles, iron oxide nanoparticles exhibit minimal or no cytotoxicity to human cells with very efficient bactericidal properties over a wide spectrum of bacteria. This paper presents the very first report on antibacterial properties of novel nanocomposites of iron oxide and cobalt oxide nanoparticles against pathogenic bacterial strains B. subtilis, S. aureus, E.coli and S. typhi. The enhanced bactericidal activity of the Fe/Co oxide nanocomposite was the result of synergistic effect of iron oxide and cobalt oxide nanoparticles. The nanocomposites were synthesized using co-precipitation route with increasing cobalt content in the sample and further characterized using XRD, TEM, Raman and VSM to investigate structural, optical and magnetic properties of the prepared nanocomposites, respectively. Also, the prepared nanocomposites were highly biocompatible and found non-toxic to human cell line MCF7.
The present study evaluates the effects of short term (15 days) exposure of low dose (300 μg kg−1) of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) on antioxidant status and markers of liver and kidney damage in normal (nondiabetic) and diabetic male Wistar rats. Rats were divided into four groups: Group I as normal control, Group II as atrazine treated, Group III as diabetic control, and Group IV as atrazine treated diabetic rats. Atrazine administration resulted in increased MDA concentration as well as increased activities of SOD, CAT, and GPx in both liver and kidney of atrazine treated and atrazine treated diabetic rats. However, GSH level was decreased in both liver and kidney of atrazine treated and atrazine treated diabetic rats. Atrazine administration led to significant increase in liver damage biomarkers such as AST, ALT, and ALP as well as kidney damage biomarkers such as creatinine and urea in both normal and diabetic rats, but this increase was more pronounced in diabetic rats when compared to normal rats. In conclusion, the results of the present study demonstrate that short term exposure of atrazine at a dose of 300 μg kg−1 could potentially induce oxidative damage in liver and kidney of both normal and diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.