The composite structures have great advantages in terms of structural and constructive aspects, with the shear connectors being decisive for obtaining the interaction between the structural elements and for the distribution of the stresses in the structure, taking advantage of the potentiality of each constituent material of the composite structure (steel and concrete). This work, through experimental studies, presents the development of a shear connector (Truss connector) proposed for use in a concrete-steel composite beam. The proposed connector is easy to implement and can serve as a viable alternative to the use of stud or U connectors. It was idealized a connector geometry that would provide low production cost, ease of execution, higher values of resistant load, efficiency as regards the relative sliding resistance between the metal profile and the concrete slab, as well as the efficiency regarding the resistance to the spacing of the slabs in relation to the metal profile (uplift). In order to evaluate the behavior of Truss connectors, 6 experimental models were constructed for push-out tests, 3 with 12.5 mm diameter Truss connectors and 3 with 19.0 mm diameter stud bolt connectors. The behavior of the models was investigated with respect to the loads of rupture, the transversal displacements between the concrete slabs and the relative vertical slide between the reinforced concrete slabs and the metallic profiles of the models. The results of the experimental analyzes provided an overview of the operation of the Truss and stud bolt connectors, with significant results that showed advantages of the Truss connector in relation to the stud connector considering the parameters analyzed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.